Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Modelling effective soil depth at field scale from soil sensors and geomorphometric indices

Castro Franco, Mauricio and Domenech, Marisa and Costa, José Luis and Aparicio, Virginia Carolina (2017) Modelling effective soil depth at field scale from soil sensors and geomorphometric indices. Acta Agronómica, 66 (2). 228 - 234. ISSN 2323-0118

Texto completo

[img]
Vista previa
PDF - Versión Publicada
Available under License Creative Commons Attribution Non-commercial Share Alike.

10MB

URL oficial: https://revistas.unal.edu.co/index.php/acta_agrono...

Resumen

The effective soil depth (ESD) affects both dynamic of hydrology and plant growth. In the southeast of Buenos Aires province, the presence of petrocalcic horizon constitutes a limitation to ESD. The aim of this study was to develop a statistic model to predict spatial patterns of ESD using apparent electrical conductivity at two depths: 0-30 (ECa_30) and 0-90 (ECa_90) and geomorphometric indices. To do this, a Random Forest (RF) analysis was applied. RF was able to select those variables according to their predictive potential for ESD. In that order, ECa_90, catchment slope, elevation and ECa_30 had main prediction importance. For validating purposes, 3035 ESD measurements were carried out, in five fields. ECa and ESD values showed complex spatial pattern at short distances. RF parameters with lowest error (OOBerror) were calibrated. RF model simplified which uses main predictors had a similar predictive development to it uses all predictors. Furthermore, RF model simplified had the ability to delineate similar pattern to those obtained from in situ measure of ESD in all fields. In general, RF was an effective method and easy to work. However, further studies are needed which add other types of variables importance calculation, greater number of fields and test other predictors in order to improve these results.

Tipo de documento:Artículo - Article
Palabras clave:Feature selection, Petrocalcic horizon, Random Forest
Temática:5 Ciencias naturales y matemáticas / Science > 55 Ciencias de la tierra / Earth sciences & geology
6 Tecnología (ciencias aplicadas) / Technology > 63 Agricultura y tecnologías relacionadas / Agriculture
Unidad administrativa:Revistas electrónicas UN > Acta Agronómica
Código ID:59895
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :28 Noviembre 2017 14:51
Ultima modificación:28 Noviembre 2017 14:51
Ultima modificación:28 Noviembre 2017 14:51
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox