Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Previsión de demanda intermitente con métodos de series de tiempo y redes neuronales artificiales: Estudio de caso

Santa Cruz Rodriguez, Adolfo Rene and Corrêa, Camila (2017) Previsión de demanda intermitente con métodos de series de tiempo y redes neuronales artificiales: Estudio de caso. DYNA, 84 (203). pp. 9-16. ISSN 2346-2183

Texto completo

[img]
Vista previa
PDF - Versión Publicada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

592kB

URL oficial: https://revistas.unal.edu.co/index.php/dyna/articl...

Resumen

Este artículo tiene como objetivo estudiar la previsión de la demanda intermitente de un tipo específico de pieza de reposición en una industria brasilera de sistemas de refrigeración que comercializa sus productos en el mercado latinoamericano. La demanda es caracterizada en términos de intermitencia y variabilidad. Los resultados son calculados usando métodos clásicos de previsión intermitente fuera de la muestra: Croston, Aproximación Syntetos-Boylan (SBA), Corrección Shale-Boylan-Johnston (SBJ), Algoritmo de Previsión de Agregación Múltiple (MAPA) y modelos basados en Redes Neuronales Artificiales (RNA). El Error Cuadrático Medio (RMSE) y Desvío Medio Absoluto (MAE) son utilizados para efectos de comparación y selección del modelo de previsión. El análisis comparativo de los resultados muestra que las previsiones basadas en modelos RNA simple de tres capas y entrenadas con el algoritmo Resilient Backpropagation presentan mejor desempeño. Los cálculos fueron realizados con el software R, RStudio, bibliotecas “forecast”, “tsintermittent” y “neuralnet”., This article aims to study the intermittent demand forecasting for a specific type of spare part of a Brazilian refrigeration industry that commercialize its products in the Latin American market. Demand characterization is performed in terms of their intermittency and variability. Results are obtained with classical intermittent forecasting methods outside the sample: Croston, Syntetos-Boylan Approximation (SBA), Shale-Boylan-Johnston Correction (SBJ), Multiple Aggregation Prediction Algorithm (MAPA) and with Artificial Neural Networks (ANN) based models. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are used for comparison and selection of forecast model. The comparative analysis results shows that the predictions based on a simple three-layer ANN model trained with the Resilient Backpropagation algorithm present better performance. The calculations were performed using R software with RStudio, "forecast", "tsintermittent" and "neuralnet" libraries.

Tipo de documento:Artículo - Article
Palabras clave:demand forecasting, intermittent demand, artificial neural networks, previsión de la demanda, demanda intermitente, redes neuronales artificiales
Temática:6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Revistas electrónicas UN > Dyna
Código ID:59244
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :16 Noviembre 2017 14:43
Ultima modificación:27 Noviembre 2017 22:02
Ultima modificación:27 Noviembre 2017 22:02
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox