Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Evaluación de la pérdida de vida del aislamiento solido en transformadores de potencia, estimando la historia de carga y los perfiles de temperatura ambiente por medio de redes neuronales artificiales y simulaciones de Monte Carlo

Romero Quete, Andrés Arturo and Mombello, Enrique Esteban and Rattá, Giuseppe (2016) Evaluación de la pérdida de vida del aislamiento solido en transformadores de potencia, estimando la historia de carga y los perfiles de temperatura ambiente por medio de redes neuronales artificiales y simulaciones de Monte Carlo. DYNA, 83 (197). pp. 104-113. ISSN 2346-2183

Texto completo

[img]
Vista previa
PDF - Versión Publicada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

625kB

URL oficial: https://revistas.unal.edu.co/index.php/dyna/articl...

Resumen

La estimación de la pérdida de vida es útil para la gestión de transformadores de potencia. Un método, no invasivo, es estimar la edad funcional del papel aislante del transformador, mediante las guías de carga. Para esto, el perfil de temperatura del punto caliente es calculado a partir de características técnicas del transformador, los perfiles carga y temperatura ambiente y un conjunto de ecuaciones diferenciales. En la práctica, la información disponible para este análisis es incompleta. En este artículo se presenta un método para estimar la carga histórica y los perfiles de temperatura ambiente experimentados por el transformador, cuando existe falta de datos. Para este fin, el método emplea una red neuronal artificial y simulaciones de Monte Carlo. El método es aplicado a un transformador de potencia de 30 MVA. Los resultados obtenidos son analizados en una sección de validación para finalmente dar las conclusiones del trabajo., A non-invasive method useful for asset management is to estimate the functional age of the insulating paper of the transformer that is caused by thermal aging. For this purpose, the hot-spot temperature profile must be assessed by means of some transformer characteristics, the historical load, ambient temperature profiles and a set of equations. In many in-service unit cases, the available data is incomplete. This paper proposes a method to deal with the lack of data. The method is based on the estimation of the historical load and ambient temperature profiles by using an artificial neural network and Monte Carlo simulations. The probable loss of total life percentage of a 30 MVA power transformer is obtained through the proposed method. Finally, the corresponding results for the assessed transformer, a model validation section and conclusions are presented.

Tipo de documento:Artículo - Article
Palabras clave:aging, artificial neural network, asset management, Monte Carlo methods, load profile forecasting, envejecimiento, red neuronal artificial, gestión de activos, simulación de Monte Carlo, pronóstico del perfil de carga.
Temática:6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Revistas electrónicas UN > Dyna
Código ID:58854
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :31 Oct 2017 17:20
Ultima modificación:27 Noviembre 2017 22:04
Ultima modificación:27 Noviembre 2017 22:04
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox