Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

A comparison of trajectory granular based algorithms for the location-routing problem with heterogeneous fleet (LRPH)

Bernal-Moyano, José Alfonso and Escobar Velasquez, John Willmer and Marín-Moreno, Cesar and Linfati, Rodrigo and Gatica, Gustavo (2017) A comparison of trajectory granular based algorithms for the location-routing problem with heterogeneous fleet (LRPH). DYNA, 84 (200). pp. 193-201. ISSN 2346-2183

Texto completo

[img]
Vista previa
PDF - Versión Publicada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

794kB

URL oficial: https://revistas.unal.edu.co/index.php/dyna/articl...

Resumen

We consider the Location-Routing Problem with Heterogeneous Fleet (LRPH) in which the goal is to determine the depots to be opened, the customers to be assigned to each open depot, and the corresponding routes fulfilling the demand of the customers and by considering a heterogeneous fleet. We propose a comparison of granular approaches of Simulated Annealing (GSA), of Variable Neighborhood Search (GVNS) and of a probabilistic Tabu Search (pGTS) for the LRPH. Thus, the proposed approaches consider a subset of the search space in which non-favorable movements are discarded regarding a granularity factor. The proposed algorithms are experimentally compared for the solution of the LRPH, by taking into account the CPU time and the quality of the solutions obtained on the instances adapted from the literature. The computational results show that algorithm GSA is able to obtain high quality solutions within short CPU times, improving the results obtained by the other proposed approaches., Nosotros consideramos el problema de localización y ruteo de vehículos con flota heterogénea (LRPH) en el cual la meta es determinar los depósitos a ser abiertos, los clientes asignados a cada deposito, y las rutas que satisfagan la demanda de los clientes considerando una flota heterogénea. Nosotros proponemos una comparación de algoritmos granulares de Recocido Simulado (GSA), Búsqueda de Vecindario Variable (GVNS) y Tabú Search probabilístico (pGTS) para el LRPH. De esta manera, los algoritmos propuestos consideran un subconjunto del espacio en el cual los movimientos menos favorables son descartados según un factor de granularidad. Los algoritmos propuestos son comparados experimentalmente para la solución del LRPH, considerando el tiempo de CPU y la calidad de la solución obtenida en instancias adaptadas de la literatura. Los resultados computacionales muestran que el algoritmos GSA es capaz de obtener buenas soluciones en tiempos computacionales reducidos, mejorando los resultados obtenidos por los otros algoritmos propuestos.

Tipo de documento:Artículo - Article
Palabras clave:Location-routing problem, heterogeneous fleet, simulated annealing, variable neighborhood search, probabilistic tabu search, metaheuristic algorithms, Problema de localización y ruteo, flota heterogénea, recocido simulado, búsqueda de vecindario variable, búsqueda tabú probabilística, algoritmos metaheurísticos
Temática:6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Revistas electrónicas UN > Dyna
Código ID:58770
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :31 Oct 2017 17:19
Ultima modificación:27 Noviembre 2017 22:03
Ultima modificación:27 Noviembre 2017 22:03
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox