Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

A VoIP call classifier for carrier grade based on Support Vector Machines

Wilches-Cortina, Juan Ricardo and Cardona-Peña, Jairo Alberto and Tello-Portillo, Juan Pablo (2017) A VoIP call classifier for carrier grade based on Support Vector Machines. DYNA, 84 (202). pp. 75-83. ISSN 2346-2183

Texto completo

[img]
Vista previa
PDF - Versión Publicada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

1MB

URL oficial: https://revistas.unal.edu.co/index.php/dyna/articl...

Resumen

Currently, VoIP company technicians conduct tests to classify call quality as good or bad. Even though, there are automatic platforms that make test VoIP calls to classify them, they do not perform audio processing to detect False Answer Supervision (FAS), which is a common and undesirable feature of VoIP calls. In this paper, a Vector Support Machine (SVM) along with several functions used in voice recognition were implemented to emulate the human decision procedure (the task of audio classification and analysis performed by technicians). The experiments were based on the comparison between the results obtained from the current classification methods and those derived from the SVM. A 10-fold cross-validation was used to evaluate the system performance. The tests results from the proposed methodology show a better percentage of successful classification compared to a selected automatic platform called CheckMyRoutes., Actualmente, los técnicos de compañías de VoIP realizan pruebas y clasifican las llamadas como buenas o malas. Asimismo, existen plataformas automáticas que realizan llamadas VoIP para clasificarlas, sin realizar procesamiento de audio; proceso necesario cuando se pretende detectar el False Answer Supervision (FAS), una característica común e indeseable de las llamadas VoIP. Se implementó una Máquina de Vectores de Soporte (SVM) junto con varias funciones utilizadas en el reconocimiento de voz para emular la toma de decisiones de los humanos (tarea de clasificación y análisis de audio realizada por los técnicos). Los experimentos se basaron en la comparación entre los resultados obtenidos de los métodos de clasificación actuales y los derivados de la SVM. Se utilizó una validación cruzada de diez veces para evaluar el rendimiento del sistema. Derivado de los resultados, la metodología propuesta muestra un mejor porcentaje de clasificación exitosa comparado con una plataforma automática llamada CheckMyRoutes.

Tipo de documento:Artículo - Article
Palabras clave:Audio analysis, pattern recognition, SVM, VoIP, Análisis de audio, reconocimiento de patrones, SVM, VoIP
Temática:6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Revistas electrónicas UN > Dyna
Código ID:58687
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :31 Oct 2017 17:19
Ultima modificación:27 Noviembre 2017 22:02
Ultima modificación:27 Noviembre 2017 22:02
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox