Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Avances recientes en la predicción de la demanda de electricidad usando modelos no lineales./ Recent advances in load forecasting using nonlinear models.

Rueda, Viviana María and Velásquez Henao, Juan David and Franco Cardona, Carlos Jaime (2011) Avances recientes en la predicción de la demanda de electricidad usando modelos no lineales./ Recent advances in load forecasting using nonlinear models. Dyna, 78 (167). pp. 36-43. ISSN 0012-7353

Texto completo

[img]
Vista previa
PDF - Versión Aceptada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

170kB

Resumen

La predicción de la demanda es un problema de gran importancia para el sector eléctrico, ya que a partir de sus resultados, los agentes del mercado de energía toman las decisiones más adecuadas para su labor. En este artículo se presenta un análisis de las técnicas y modelos más usados en el pronóstico de la demanda de electricidad y la problemática o difi cultades a las que se enfrentan los investigadores al momento de realizar un pronóstico. El análisis muestra que las técnicas más usadas son los modelos ARIMA y las redes neuronales artifi ciales. Sin embargo, se encontró poca claridad sobre cuál modelo es más adecuado y en qué casos, adicionalmente, los estudios no presentan una recomendación específi ca para desarrollar modelos de pronóstico de demanda, específi camente en el caso colombiano. Finalmente, se propone realizar un estudio sistemático con el fi n de determinar los modelos más adecuados para predicción de demanda para el caso colombiano./ Abstract: Electricity demand forecasting is a major problem for the electricity sector, because the energy market players use the results of the electricity demand forecasting to make the right decisions for their work. This article presents an analysis of models and techniques used in the electricity demand forecasting and explain the problems or diffi culties that researchers have when making a forecast. Our analysis shows that the most used techniques are the ARIMA model and artifi cial neural networks. However, it appears unclear evidence on which model is most appropriate and in what cases, in addition, the studies do not present a specifi c recommendation to develop models for forecasting demand, specifi cally in the Colombian case. Finally, we propose to make a systematic study to determine the most appropriate models for forecasting demand for the Colombian case.

Tipo de documento:Artículo - Article
Palabras clave:Pronóstico; Demanda de electricidad; Modelos no lineales.
Temática:0 Generalidades / Computer science, information & general works
Unidad administrativa:Sede Medellín > Facultad de Minas > Escuela de Sistemas
Código ID:5431
Enviado por : Biblioteca Sede Medellín Universidad Nacional de Colombia
Enviado el día :12 Enero 2012 22:15
Ultima modificación:07 May 2012 20:14
Ultima modificación:07 May 2012 20:14
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox