Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

A Genetic Clustering Algorithm for Automatic Text Summarization

Suaréz Benjumea, Sebastian (2016) A Genetic Clustering Algorithm for Automatic Text Summarization. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.

Texto completo

[img]
Vista previa
PDF - Versión Aceptada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

640kB

Resumen

Abstract. Automatic text summarization has become a relevant topic due to the information overload. This automatization aims to help humans and machines to deal with the vast amount of text data (structured and un-structured) offered on the web and deep web. In this research a novel approach for automatic extractive text summarization called SENCLUS is presented. Using a genetic clustering algorithm, SENCLUS clusters the sentences as close representation of the text topics using a fitness function based on redundancy and coverage, and applies a scoring function to select the most relevant sentences of each topic to be part of the extractive summary. The approach was validated using the DUC2002 data set and ROUGE summary quality measures. The results shows that the approach is representative against the state of the art methods for extractive automatic text summarization., La generación automática de resúmenes se ha posicionado como un tema de gran importancia debido a la sobrecarga informativa. El objetivo de esta tecnología es el ayudar humanos y maquinas a lidiar con el gran volumen de información en forma de texto (estructurada y no estructurada) que se encuentra en la red y en la red profunda. Esta investigación presenta un nuevo algoritmo para la generación automática de resúmenes extractivos llamado SENCLUS. Este algoritmo es capaz de detectar los temas presentes en un texto usando una técnica de agrupación genética para formar grupos de oraciones. Estos grupos de oraciones son una representación aproximada de los temas del texto y estos son formados usando una función aptitud basada en cobertura y redundancia. Una vez los grupos de oraciones son encontrados, se aplica una función puntuación para seleccionar las oraciones mas relevantes de cada tema hasta que las restricciones de longitud del resumen lo permitan. SENCLUS fue validado en una serie de experimentos en los cuales se usò el conjunto de datos DUC2002 para la generación de resúmenes de un solo documento y se usò la medida ROUGE para medir de forma automática la calidad de cada resumen. Los resultados mostraron que el enfoque propuesto es representativo al ser comparado con los algoritmos presentes en el estado del arte para la generación de resúmenes extractivos.

Tipo de documento:Tesis/trabajos de grado - Thesis (Maestría)
Colaborador / Asesor:León Guzmán, Elizabeth
Información adicional:Master in Systems and Computer Engineering. Research Area: Text Mining, NLP
Palabras clave:Text mining, Genetic algorithm, Clustering algorithm, Automatic text summarization, Single document automatic text summarization
Temática:0 Generalidades / Computer science, information & general works
6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Sede Bogotá > Facultad de Ingeniería > Departamento de Ingeniería de Sistemas e Industrial > Ingeniería de Sistemas
Código ID:53848
Enviado por : Sebastian Suarez benjumea
Enviado el día :13 Oct 2016 14:41
Ultima modificación:18 Oct 2016 20:11
Ultima modificación:18 Oct 2016 20:11
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox