Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Reconocimiento de la 3-Esfera

Segura Aguilar, Joan Carlos (2011) Reconocimiento de la 3-Esfera. Maestría thesis, Universidad Nacional de Colombia, Sede Medellín.

Texto completo

[img] PDF - Versión Aceptada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

3MB

Resumen

El desarrollo de esta tesis consiste en describir el algoritmo de Rubinstein, el cual puede distinguir si una 3-variedad es o no es la 3-esfera. Detallaremos la versión de Matveev para este algoritmo. El algoritmo considera una 3-variedad por medio de la descomposición en asas generadas por una espina especial. Si la 3-variedad es una 3-esfera, un teorema de Rubinstein garantiza la existencia de una 2-esfera 2-normal contenida en la 3-variedad con la propiedad de que en la intersección de esta 2- esfera y al menos una bola (0-asa) de la descomposición en asas aparece al menos un cuadrilátero o un octágono. El algoritmo busca tal 2-esfera y si no la encuentra, se concluye que la 3-variedad no es la 3-esfera. Si se encuentra una tal 2-esfera, se usa para cortar la 3-variedad en varias partes cada una de las cuales es una 3-variedad con \complejidad" menor, y de tal manera que la 3-variedad original es una 3-esfera si y sólo si cada una de las partes es la 3-esfera. Para determinar si una de las partes es la 3-esfera, el algoritmo es aplicado recursivamente, a menos que trivialmente sea la 3-esfera (su espina es un punto)/Abstract. This thesis describes an algorithm by Rubinstein that distinguishes whether a 3- manifold is the 3-sphere or not. We give the details of Matveev's version of this algorithm. The algorithm considers a 3-manifold by means of the handle decomposition generated by a special spine. If the 3-manifold is the 3-sphere, a theorem by Rubinstein guarantees that there is a 2-normal 2-sphere contained in the 3-manifold with the property that in the intersection of this 2-sphere and at least one ball (0- handle) of the decomposition appears a quadrilateral or an octagon. The algorithm looks for such a 2-sphere and if it is not found, it is concluded that the 3-manifold is not the 3-sphere. If such a 2-sphere is found, it is used to cut the 3-manifold into several pieces which are 3-manifolds with smaller \complexity" and such that the original 3-manifold is a 3-sphere if and only if each of the pieces is a 3-sphere. To determine if one of the pieces is the 3-sphere, the algorithm is applied recursively, unless it is trivially the 3-sphere (its spine is a point).

Tipo de documento:Tesis/trabajos de grado - Thesis (Maestría)
Colaborador / Asesor: Ramos Navarrete, Edgar Arturo and Parra Londoño, Carlos Mario
Palabras clave:3-Variedades; Espinas Especiales; Superficie 2-Normal; Descomposición en Asas; Posición Delgada para Enlaces; El Teorema de Rubinstein.
Temática:5 Ciencias naturales y matemáticas / Science > 51 Matemáticas / Mathematics
Unidad administrativa:Sede Medellín > Facultad de Ciencias > Escuela de Matemáticas > Matemáticas
Código ID:5362
Enviado por : Biblioteca Sede Medellín Universidad Nacional de Colombia
Enviado el día :02 Dec 2011 21:37
Ultima modificación:02 Dec 2011 21:37
Ultima modificación:02 Dec 2011 21:37
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox