Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Characterization of Architectural Distortion in Mammograms

Alvarez Triana, Jorge Andres (2016) Characterization of Architectural Distortion in Mammograms. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.

Texto completo

[img]
Vista previa
PDF - Versión Aceptada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

18MB

URL oficial: http://www.journals.elsevier.com/computerized-medi...

Resumen

En Mamografía suele evaluarse la presencia o posibilidad de cáncer de seno mediante signos como calcificaciones, masas, asimetría bilateral y distorsión arquitectural, este último de difícil identicación debido a la compleja distribución de los tejidos en la mama, siendo frecuentemente pasado por alto. La distorsión arquitectural se caracteriza por un patrón espiculado que define la malignidad de la lesión. Muchos de los trabajos realizados para caracterizar la distorsión arquitectural llevan la imagen entera a otro espacio en donde los patrones pueden ser discriminados. En esta tesis se presenta un método novedoso que utiliza información en el espacio de la imagen, en la cual primero se seleccionan manualmente las regiones de interes que son pre procesadas para mejorar sus detalles visuales. Después, la caracterización de la AD se realiza mediante la representación lineal de la saliencia en las regiones de interes (ROI) como un gráfo cuyos nodos corresponden a los píxeles a lo largo del borde de la ROI y cuyos arcos corresponden a las integrales de intensidad a lo largo de la ruta de conexión de cualquier par de nodos. Un conjunto de vectores propios obtenido de la matriz de adyacencia se utiliza para extraer coeficientes discriminantes que representen aquellos nodos con las íneas mas sobresalientes. Una reducción de dimensionalidad se logra adicionalmente mediante la selección del par de nodos con mayor contribución para cada uno de los vectores propios calculados. El conjunto de las líneas principales sobresalientes se ensambla como un vector de características que se introduce a una Maquína de soporte vectorial (SVM). Los resultados experimentales se realizan con dos bases de datos de referencia, el cojunto de datos MIAS y la base de datos DDSM, demostrando que el método propuesto tiene un buen desempeño en términos de precisión y sensibilidad. El enfoque se evaluó con un conjunto de 246 ROI extraidas de la base DDSM (123 normales y 123 controles) y un conjunto de 38 ROI de la base de datos MINIMIAS (19 normales y 19 controles), respectivamente. Los resultados de la clasificación mostraron respectivamente, tanto para ambas bases de datos una precisión del 89,02% y el 86,89 %, una sensibilidad del 85,37% y el 84,21 %, y una tasa de especificidad del 92,68% y 89,47 % respectivamente., Abstract. In mammography is usually evaluated the presence or possibility of breast cancer by using signs such as calcifications, masses, bilateral asymmetry and architectural distortion, being commonly overlooked. The architectural distortion is characterized by spiculated patterns that define the disease malignancy level, making it difficult to identify by such complex distribution of breast tissues. Most of existing methods characterize the architectural distortion by transforming the entire image to an alternative space, in which such complex patterns may be discriminated. In this thesis, we present a novel method that uses information in the image space, in which a region of interest is firstly selected to be preprocessed to enhance visual details. Afterward AD characterization is done by representing the linear saliency in mammography Regions of Interest (ROI) as a graph whose nodes correspond to those pixels along the ROI boundary and whose edges stand for the line intensity integrals along the path connecting any pair of nodes. A set of eigen-vectors from the adjacency matrix is then used to extract discriminant coefficients that represents those nodes with higher salient lines. A dimensionality reduction is further accomplished by selecting the pair of nodes with major contribution for each of the computed eigen-vectors. The set of main salient lines is then assembled as a feature vector that inputs a conventional Supported Vector Machine (SVM). Experimental results with two benchmark databases, the MIAS and DDSM database, demonstrate the proposed method performs well in terms of accuracy. The approach was evaluated with a set of 246 ROI extracted from the DDSM (123 normal and 123 AD) and a set of 38 ROI from the MINIMIAS collections (19 normal and 19 AD) respectively. The classification results showed respectively for both databases an accuracy rate of 89,02% and 86,89 %, a sensitivity rate of 85.37% and 84,21 %, and a specificity rate of 92.68% and 89,47 %.

Tipo de documento:Tesis/trabajos de grado - Thesis (Maestría)
Colaborador / Asesor:Romero Castro, Edgar Eduardo
Información adicional:Magister en Ingeniería Biomédica. Línea de Investigación: Procesamiento Digital de Imágenes
Palabras clave:Mamografía, mammography, Distorsión arquitectural, Cáncer de seno, Centralidad de autovector, Arqchitectural distortion, Breast cancer, Carcinoma, Eigenvector centrality
Temática:6 Tecnología (ciencias aplicadas) / Technology > 61 Ciencias médicas; Medicina / Medicine & health
6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Sede Bogotá > Facultad de Medicina > Instituto de Investigaciones Biomédicas
Código ID:52189
Enviado por : Unnamed user with email jaalvarezt@unal.edu.co
Enviado el día :02 Junio 2016 15:35
Ultima modificación:02 Junio 2016 15:35
Ultima modificación:02 Junio 2016 15:35
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox