Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos

Carmona Flórez, Gloria Patricia (2015) Comparación de la Regresión GINI con la Regresión de Mínimos Cuadrados Ordinarios y otros modelos de regresión lineal robustos. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.

Texto completo

[img]
Vista previa
PDF - Versión Aceptada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

691kB

Resumen

El método de los Mínimos Cuadrados Ordinarios - OLS - es uno de los más usados para estimar la relación entre una variable dependiente (Y) e independientes (X). El modelo de regresión está dado por la relación Y=Xβ+ε. Sin embargo, OLS es sensible a observaciones atípicas, las cuales podrían no ser de interés para el investigador, por lo cual es recomendable usar métodos robustos que superen las limitaciones del método OLS. La regresión de Gini es uno de los métodos que podría tener cierto grado de robustez según la literatura (Olkin y Yitzhaki, 1992) debido a la forma matemática como está planteada. En este trabajo se compara la regresión de Gini (usando el enfoque no paramétrico de promedios ponderados de pendientes, en lugar de usar el enfoque parámetrico) con la regresión OLS y otros métodos de regresión robustos, del tipo L (LAV, combinaciones lineales de estadísticos de orden), del tipo M (M de Huber, basado en el concepto de máxima verosimilitud) y del tipo MM (basado en la minimización de un estimador M). La comparación de los métodos se realiza vía simulación bajo diferentes escenarios: Uno de normalidad de los errores (con µ=0 y σ=1) y tres escenarios de normalidad contaminada con un dato atípico, en los cuales se aumenta progresivamente la magnitud de la observación atípica (en $4 σ, 8 σ , 16 σ). Además, se investiga el efecto del tamaño muestral (n1=10, n2=30 y n3=30 =100). Como un indicador de la robustez de los métodos para estimar el coeficiente de regresión β=(β0 , β1) en presencia de datos atípicos, se usa el Error Cuadrático Medio (MSE), el coeficiente de determinación R^2 y el estadístico muestral ^2 dado por: (β ̂-β)'1/σ^2 (X'X)(β ̂-β)~ ^2 Si el método es sensible a datos atípicos, entonces se espera que el estadístico muestral ^2 se aleje de su valor esperado que es 2. Del mismo modo se espera que el MSE sea mayor en los métodos más robustos y consecuentemente el〖 R〗^2 sea menor. Los resultados encontrados vía simulación muestran mediante el análisis del MSE, el 〖 R〗^2 y el ^2 que la regresión de Gini tiene un mayor grado de robustez en comparación con la regresión OLS al estimar los coeficientes de regresión ante la presencia de datos atípicos, pero su robustez es menor que la de los métodos de estimación robustos LAV, M de Huber y MM. El método de los Mínimos Cuadrados Ordinarios - OLS - es uno de los más usados para estimar la relación entre una variable dependiente (Y) e independientes (X). El modelo de regresión está dado por la relación Y=Xβ+ε. Sin embargo, OLS es sensible a observaciones atípicas, las cuales podrían no ser de interés para el investigador, por lo cual es recomendable usar métodos robustos que superen las limitaciones del método OLS. La regresión de Gini es uno de los métodos que podría tener cierto grado de robustez según la literatura (Olkin y Yitzhaki, 1992) debido a la forma matemática como está planteada. En este trabajo se compara la regresión de Gini (usando el enfoque no paramétrico de promedios ponderados de pendientes, en lugar de usar el enfoque parámetrico) con la regresión OLS y otros métodos de regresión robustos, del tipo L (LAV, combinaciones lineales de estadísticos de orden), del tipo M (M de Huber, basado en el concepto de máxima verosimilitud) y del tipo MM (basado en la minimización de un estimador M). La comparación de los métodos se realiza vía simulación bajo diferentes escenarios: Uno de normalidad de los errores (con µ=0 y σ=1) y tres escenarios de normalidad contaminada con un dato atípico, en los cuales se aumenta progresivamente la magnitud de la observación atípica (en $4 σ, 8 σ , 16 σ). Además, se investiga el efecto del tamaño muestral (n1=10, n2=30 y n3=30 =100). Como un indicador de la robustez de los métodos para estimar el coeficiente de regresión β=(β0 , β1) en presencia de datos atípicos, se usa el Error Cuadrático Medio (MSE), el coeficiente de determinación R^2 y el estadístico muestral ^2 dado por: (β ̂-β)'1/σ^2 (X'X)(β ̂-β)~ ^2 Si el método es sensible a datos atípicos, entonces se espera que el estadístico muestral ^2 se aleje de su valor esperado que es 2. Del mismo modo se espera que el MSE sea mayor en los métodos más robustos y consecuentemente el〖 R〗^2 sea menor. Los resultados encontrados vía simulación muestran mediante el análisis del MSE, el 〖 R〗^2 y el ^2 que la regresión de Gini tiene un mayor grado de robustez en comparación con la regresión OLS al estimar los coeficientes de regresión ante la presencia de datos atípicos, pero su robustez es menor que la de los métodos de estimación robustos LAV, M de Huber y MM.

Tipo de documento:Tesis/trabajos de grado - Thesis (Maestría)
Colaborador / Asesor:Correa Morales, Juan Carlos
Información adicional:Maestría en Ciencias Estadísticas
Palabras clave:Mínimos Cuadrados Ordinarios, Regresión Gini, Modelos de Regresión Robustos, Eficiencia, Robustez, Datos atípicos, Gini Regression, Ordinary Least Square, Robustness Regression, Efficiency, Atypical
Temática:5 Ciencias naturales y matemáticas / Science > 51 Matemáticas / Mathematics
Unidad administrativa:Sede Medellín > Facultad de Ciencias > Escuela de Estadística
Código ID:49221
Enviado por : Magister GLORIA PATRICIA CARMONA FLOREZ
Enviado el día :18 Agosto 2015 15:53
Ultima modificación:18 Agosto 2015 15:57
Ultima modificación:18 Agosto 2015 15:57
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox