FÍSICA

Principios de Electricidad y Magnetismo
© 2012 UNIVERSIDAD NACIONAL DE COLOMBIA
SEDE MANIZALES
FACULTAD DE CIENCIAS EXACTAS Y NATURALES
DECANO PROF. ANDRÉS ROSALES RIVERA
L.B.N. 978-958-761-283-7
Prohibida la reproducción total o parcial por cualquier medio sin la autorización escrita del titular de los derechos patrimoniales

© AUTORES:

HÉCTOR BARCO RÍOS
Ingeniero Electricista
Magíster en Ciencias - Física
Especialista en Ciencias Físicas
Especialista en Docencia Universitaria
Profesor Asociado Departamento de Física y Química

EDIELBERTO ROJAS CALDERÓN
Licenciado en Física y Matemáticas
Magíster en Economía del Medio Ambiente y Recursos Naturales
Especialista en Ciencias Físicas
Profesor Asociado Departamento de Física y Química

ELISABETH RESTREPO PARRA
Ingeniera Electricista
Magíster en Física
Doctora en Ingeniería Línea de Investigación en Automática
Profesora Asociada Departamento de Física y Química

REVISORES:

Carlos Eduardo Orrego Alzate
Ingeniero Químico
Especialista en Ciencia y Tecnología de Alimentos
Especialista en Ciencias Físicas
Doctor en Ciencias Química

Hernán Vivas Calderón
Físico
Magíster en Ciencias - Física

Primera Edición, Julio de 2012
CONTENIDO

INTRODUCCIÓN .. 11

CAPÍTULO 1. LEY DE COULOMB ... 13
1.1 Introducción ... 15
1.2 Electrostática ... 15
1.3 Concepto de carga eléctrica .. 15
1.4 Ley de Coulomb .. 18
1.5 Sistemas de Unidades .. 21
Problemas Resueltos ... 23
Problemas Propuestos .. 33

CAPÍTULO 2. CAMPO ELÉCTRICO... 37
2.1 Introducción .. 39
2.2 Campo escalar ... 39
2.3 Campo vectorial ... 40
2.4 Campo eléctrico ... 40
2.5 Intensidad del campo eléctrico ... 41
2.6 Sistemas de unidades .. 42
2.7 Líneas de fuerza ... 43
2.8 Cálculo de \vec{E} debido a un grupo de cargas puntuales 47
2.9 Cálculo de \vec{E} debido a una distribución continua de carga 48
2.10 Densidad de carga ... 49
2.11 Dipolo eléctrico ... 50
2.12 Momento del dipolo eléctrico .. 50
2.13 Experimento de la gota de aceite de Millikan 53
Problemas Resueltos ... 58
Problemas Propuestos .. 69

CAPÍTULO 3. LEY DE GAUSS .. 73
3.1 Introducción .. 75
3.2 Flujo eléctrico ... 75
3.3 Ley de Gauss ... 77
3.4 Distribución de cargas en un conductor aislado 78
Problemas Resueltos ... 80
Problemas Propuestos .. 88

CAPÍTULO 4. POTENCIAL ELECTROSTÁTICO 91
4.1 Introducción ... 93
4.2 Diferencia de potencial electrostático ... 93
6.8 Fuentes de fuerza electromotriz (FEM) ... 174
6.9 Fuerza electromotriz .. 174
6.10 Fuentes de FEM conectadas en serie ... 175
6.11 Fuentes de FEM conectadas en paralelo .. 175
6.12 Ley de Ohm ... 176
6.13 Resistencia eléctrica ... 178
6.14 Sistemas de unidades ... 180
6.15 Efecto de la temperatura sobre la resistencia eléctrica 182
6.16 Resistencias en serie ... 183
6.17 Resistencias en paralelo .. 185
6.18 Circuito eléctrico ... 186
6.19 Parámetros de un circuito ... 187
6.20 Nodos en un circuito ... 187
6.21 Mallas en un circuito ... 187
6.22 Potencia eléctrica .. 188
6.23 Máxima transferencia de potencia .. 189
6.24 Leyes de Kirchhoff ... 191
6.25 Transformaciones triángulo-estrella ... 192
6.26 Transformaciones estrella-triángulo .. 194
6.27 Circuito RC ... 197
Problemas Resueltos ... 201
Problemas Propuestos .. 209

CAPÍTULO 7. CAMPO MAGNÉTICO .. 215
7.1 Introducción ... 217
7.2 Campo magnético ... 217
7.3 Inducción magnética ... 218
7.4 Unidades de la Inducción magnética .. 218
7.5 Flujo magnético .. 219
7.6 Unidades del flujo magnético .. 220
7.7 Ley de Gauss para el magnetismo ... 220
7.8 Fuerza magnética sobre un conductor por el cual circula una corriente ... 221
7.9 Momento o torque sobre una espira con corriente 222
7.10 Energía potencial almacenada en el sistema espira - campo magnético ... 224
7.11 Carga aislada dentro de un campo magnético 225
Problemas Resueltos ... 227
Problemas Propuestos .. 233

CAPÍTULO 8. LEY DE AMPERE ... 237
8.1 Introducción ... 239
8.2 Dirección y sentido del campo magnético cerca de un conductor con corriente ... 239
Introducción

El libro "Principios de Electricidad y Magnetismo" surge como respuesta a los cambios de contenidos de los cursos de física en las carreras de Ingeniería de la Universidad Nacional de Colombia sede Manizales, realizados en el año 2002. Los contenidos del libro Principios de Electricidad y Magnetismo, concuerdan justamente con los que corresponden en la actualidad a la asignatura Física-Electricidad y Magnetismo.

Por tal razón, se tomó como base para la parte de Electricidad, los capítulos 7,8,9,10,11 y 12 del libro Física General para estudiantes de Ingeniería y para la segunda, los capítulos 1,2,3,4,5,6 del libro Electromagnetismo y Física Moderna elaborados por los profesores Héctor Barco Rios y Edilberto Rojas Calderón.

El contenido del libro se distribuye en 12 capítulos, en los cuales se presenta la teoría correspondiente en forma clara y ordenada, acompañada de figuras, gráficas y tablas de variables de gran utilidad en Ingeniería. Una vez presentada la teoría, se complementa cada capítulo con 10 problemas resueltos, que facilitan la comprensión y algunas aplicaciones de la teoría expuesta. Al finalizar cada capítulo, se proponen 10 problemas para ser resueltos por los estudiantes.

Tanto la teoría como los problemas que se resuelven y proponen en cada capítulo fueron tomados (en algunos casos) en forma textual de la lista de libros que se referencian al final. Por tal motivo, solo queremos con este libro, ofrecerlo a los estudiantes y profesores de Física-Electricidad y magnetismo, como un nuevo recurso o material de apoyo que complemente el desarrollo de esta asignatura que normalmente genera mucha dificultad entre los estudiantes.

Finalmente, es bueno indicar que se han incluido en el texto los aspectos más importantes de los tres tipos de coordenadas que se utilizan con mayor frecuencia: Cartesianas, Cilíndricas y Esféricas para que el estudiante pueda...
Capítulo 1. Ley de Coulomb

tenerlas a su alcance en el momento que las necesite, además algunas constantes físicas, factores de conversión y premios Nobel de Física, entre otros.

Los autores.
Capítulo 1

Ley de Coulomb

CHARLES A. COULOMB
1736 - 1806 Francia
1.1 Introducción

Aproximadamente en el año 600 A.C, los griegos sabían que al frotar el ámbar con lana éste adquiría la propiedad de atraer cuerpos livianos como pequeños pedazos de tela o paja. Los cuerpos que adquirían esta propiedad se denominaron electrizados o cargados eléctricamente; ya que en griego *elektron* significa "ámbar ".

Después de muchos experimentos y estudios, se ha llegado a la conclusión de que la electrización por frotamiento no representa un proceso de creación de electricidad, sino más bien una separación de dos tipos de electricidad que ya se encontraban presentes en cantidades iguales en el material "neutro".

En este capítulo se presentan algunas nociones fundamentales de electricidad, tipos de carga eléctrica y cálculo de fuerzas electrostáticas para diferentes tipos de sistemas de cargas y para diferentes distribuciones de carga discreta o continua.

1.2 Electrostática

Tiene por objeto el estudio las fuerzas eléctricas existentes entre cargas eléctricas en reposo y los estados de equilibrio determinados por dichas fuerzas.

1.3 Concepto de carga eléctrica

Consideremos dos pequeñas esferas de ebonita que han sido previamente frotadas con piel, y que luego se cuelgan mediante hilos de seda como se muestra en la figura 1.1; se observa que las dos esferas se repelen.

Seguidamente consideremos dos esferas pequeñas de vidrio que han sido previamente frotadas con seda, colgadas mediante hilos de seda como se muestra en la figura 1.2; se observa que las dos esferas también se repelen.
Capítulo 1. Ley de Coulomb

Ahora, si se cuelgan mediante hilos de seda una esfera de ebonita y una esfera de vidrio como se muestra en la figura 1.3, se observará que las dos esferas se atraen.

En general, si dos cuerpos diferentes se frotan entre sí, ambos se electrizan, es decir, ambos se cargan eléctricamente.

Según las observaciones anteriores se puede concluir que hay dos clase de electricidad; convencionalmente la que posee la ebonita después de haber sido frotada con piel es llamada electricidad negativa y la que posee el vidrio después de haber sido frotado con seda es llamada electricidad positiva.

Los experimentos anteriores conducen a la Ley Fundamental de la Electrostática la cual establece que: "Cargas eléctricas del mismo signo ejercen una fuerza de repulsión y cargas eléctricas de diferente signo ejercen una fuerza de atracción".

La razón por la cual los cuerpos se electrizan al ser frotados se puede explicar mediante la teoría atómica de la materia. Toda materia está
Capítulo 1. Ley de Coulomb

constituida de átomos, los que a su vez están formados por tres partículas elementales que son los protones, neutrones y electrones. En todo átomo los protones y los neutrones ocupan un espacio muy pequeño llamado núcleo y alrededor de éste giran los electrones (según el modelo atómico de Bohr). Los protones tienen carga eléctrica positiva, los neutrones no tienen carga eléctrica mientras que los electrones tienen carga eléctrica negativa. Por lo tanto, toda la carga positiva del núcleo se debe a la carga eléctrica de los protones.

La materia está formada por cantidades enormes de átomos, y por lo general, es eléctricamente neutra, es decir, tiene la misma cantidad de protones y de electrones.

Los electrones de los átomos se encuentran ligados a sus núcleos por fuerzas relativamente intensas. Sin embargo los electrones más externos del átomo están más débilmente ligados y con fuerzas de atracción fácilmente superables. Por lo tanto, estos electrones pueden pasar de un cuerpo a otro cuando se ponen dos sustancias en contacto estrecho. Es por ello que al frotar dos objetos, se pueden transferir muchos electrones de un cuerpo a otro. Cuando esto sucede, uno de los cuerpos tendrá exceso de electrones, mientras que el otro tendrá deficiencia de ellos. Entonces el que tenga exceso de electrones se hallará cargado negativamente y el otro se cargará positivamente, pero ambos cuerpos tendrán la misma cantidad de carga eléctrica neta.

Hasta donde se sabe, la carga del electrón es la cantidad más pequeña de carga eléctrica negativa que se puede encontrar en la naturaleza. Igualmente, la carga del protón, que es precisamente de la misma magnitud pero de signo contrario a la del electrón, es la unidad más pequeña de carga positiva que puede hallarse en el universo. Si se denota la carga del electrón por \(-e\), entonces la carga del protón es \(+e\). La magnitud de la carga del electrón es \(e = 1.60210 \times 10^{-19}\) Coulombs. Todo cuerpo que se encuentre cargado eléctricamente, inevitablemente su valor de la carga es un múltiplo entero exacto de la carga del electrón o la del protón, es decir, \(Q = ne\), donde \(n\) es un número entero positivo. Esta característica de la carga eléctrica de aparecer en múltiplos enteros de una carga elemental indivisible \((e)\), se conoce como cuantización de la carga eléctrica.

En la siguiente tabla se presenta algunas sustancias, ordenadas de modo que cualquier de ellas adquiere carga positiva cuando es frotada con las sustancias que le siguen, y adquirirá carga negativa cuando es frotada con las que la preceden.
Por ejemplo, si se frota lana con cuarzo, piel de gato, plomo o las que le siguen, quedará cargada positivamente; análogamente si la piel de gato se frota con cuarzo, lana, mica o cualquiera de las sustancias que la preceden, quedará cargada negativamente.

1.4 Ley de Coulomb

En 1784, el físico francés Charles Augustín Coulomb, descubrió la ley cuantitativa de las fuerzas entre dos cargas puntuales, midiendo las fuerzas de atracción o de repulsión, utilizando una balanza de torsión como se muestra en la figura 1.4.

Cargas puntuales son aquellas cuyas dimensiones geométricas son despreciables comparadas con las distancias de separación entre ellas. Es decir, las cargas se pueden considerar como puntos cargados eléctricamente.
Capítulo 1. Ley de Coulomb

Coulomb realizó todas sus mediciones en el aire, pero rigurosamente hablando, la expresión de la ley de la fuerza electrostática se refiere al vacío, es decir, al espacio en el que no existe una cantidad perceptible de átomos, moléculas u otras partículas.

La construcción de la balanza de torsión es la siguiente: En el interior de un gran recipiente de vidrio hay una palanca de vidrio suspendida de un hilo fino; en uno de los extremos de la palanca se coloca una esfera metálica A y en el otro, un contrapeso. Una segunda esfera metálica B se fija a una varilla (soporte de vidrio). Desde el exterior se pueden comunicar cargas eléctricas a ambas esferas, cargas que se retienen por cierto tiempo, ya que las esferas están aisladas una de la otra y de los cuerpos que la rodean.

La distancia entre las esferas A y B se puede variar girando la cabeza de la balanza a la cual se fija el hilo que mantiene a la palanca con la esfera A. Al comunicarle cargas a las esferas A y B, éstas comienzan a atraerse o a repelerse (según el signo de las cargas), con lo cual la palanca con la esfera A gira cierto ángulo. Haciendo girar la cabeza de la balanza se puede hacer volver la esfera A a la posición inicial, en cuyo caso el momento de torsión del hilo será igual al momento de la fuerza eléctrica aplicada a la esfera A. Si el hilo se ha graduado de antemano, se puede determinar directamente, según el ángulo de giro de la cabeza, el momento de la fuerza, y sabiendo la longitud de la palanca, se puede calcular la fuerza de acción recíproca de las esferas.

El razonamiento que hizo Coulomb fue el siguiente. Ante todo, las observaciones indican que las fuerzas de acción recíproca de las cargas están dirigidas según la recta que une las cargas. Variando la distancia r entre las esferas A y B, a las cuales se les ha comunicado unas cargas invariables (Fig 1.5a), como demuestra la experiencia, las fuerzas de acción recíproca varían en razón inversa al cuadrado de la distancia r.

Para comparar las magnitudes de dos cargas Q_1 y Q_2, medimos las fuerzas F_1 y F_2 de acción recíproca de estas dos cargas con una tercera carga determinada Q_0, colocándolas consecutivamente a una misma distancia r_0 de ésta tercera carga Q_0 (Fig 1.5b) y la (Fig 1.5c). Para ello le colocamos consecutivamente a la esfera A las cargas Q_1 y Q_2 y la carga de la esfera B la conservamos invariable e igual a Q_0. La experiencia demuestra que la relación F_1/F_2 de las fuerzas no depende de la magnitud Q_0. De la tercera carga, ni de la distancia r_0, a las que se colocan las cargas Q_1 y Q_2, de ésta tercera carga. Por lo tanto, el valor de la relación F_1/F_2 de las fuerzas lo determinan solamente las propias cargas Q_1 y Q_2.

Capítulo 1. Ley de Coulomb

Fig 1.5 Relación de fuerzas con las cargas.

De aquí que sea natural tomar la relación \(Q_1/Q_2 \) de las cargas igual a la relación \(F_1/F_2 \) de las fuerzas. De esta manera obtenemos el método para medir la relación \(Q_1/Q_2 \) de dos cargas.

Los valores absolutos de las cargas solamente se pueden obtener después de establecer la unidad de medición de las cargas.

Disponiendo del método de comparación de las cargas, podemos colocar a pares y a la misma distancia una de otra, diferentes cargas \(Q_1, Q_2, Q_3, \ldots, Q_k \). En este caso, según enseña la experiencia, la fuerza de acción recíproca \(F \) entre un par de cargas es proporcional al producto de sus magnitudes \(Q_1 \times Q_k \).

De esta manera ya se puede formular definitivamente la ley de Coulomb:

La magnitud de la fuerza de atracción o de repulsión entre dos cargas puntuales es directamente proporcional al producto de sus cargas e inversamente proporcional al cuadrado de la distancia entre ellas.

Se encuentra que la dirección de la fuerza se ejerce a lo largo de la recta que une las dos cargas, como se muestra en la figura 1.6.

Matemáticamente, la ley de Coulomb se expresa como:

\[
\vec{F} = k \frac{Q_1 Q_2}{r^2} \hat{u}_r
\]

{1.1)

Siendo,
Capítulo 1. Ley de Coulomb

Fig 1.6 La dirección de la fuerza electrostática coincide con la dirección de la recta que une las cargas puntuales.

\[r = |\vec{R} - \vec{R}'| \]

\[\hat{U}_r = \frac{\vec{R} - \vec{R}'}{r} \]

donde,
- \(Q_1, Q_2 \): Cargas puntuales.
- \(r \): Distancia de separación entre las cargas.
- \(\hat{U}_r \): Vector unitario en la dirección de la recta que une las cargas y en el sentido de la fuerza.
- \(K \): Constante de proporcionalidad.

1.5 Sistemas de unidades

a) SISTEMA CGS.

\(F \): Dina
\(Q \): Stat Coulomb (stc)
Capítulo 1. Ley de Coulomb

\[r : \text{Centímetro} \]
\[K = 1 \ (\text{vacio}) \]

STAT COULOMB: Es la cantidad de carga eléctrica que al actuar sobre otra igual ejerce una fuerza de una dina cuando están separadas un centímetro de distancia.

b) SISTEMA MKS.

\[F : \text{Newton} \]
\[Q : \text{Coulomb (coul)} \]
\[r : \text{Metro} \]

donde,

\[K = \frac{1}{4\pi\varepsilon_0} = \frac{9 \times 10^9}{\text{nw.m}^2/\text{coul}^2} \ (\text{vacio}) \]

siendo,

\[\varepsilon_0 : \text{Constante de permitividad eléctrica en el vacío y su valor es:} \]
\[\varepsilon_0 = 8.85 \times 10^{-12} \ \text{coul}^2/\text{nw.m}^2 \ (\text{vacio}) \]

COULOMB: Es la cantidad de carga eléctrica que al actuar sobre otra igual ejerce una fuerza de 9×10^9 nw cuando están separadas un metro de distancia.

La conversión entre coul y stc es la siguiente:

\[1 \ \text{coul} = 3 \times 10^3 \ \text{stc} \]
1.1 Una esfera de cristal tiene una carga de 2 μcoul. Cuántos electrones debieron desprenderse de la esfera para que tuviera dicha carga?

\[Q = ne \]

\[n = \frac{Q}{e} = \frac{2 \times 10^{-6}}{1.6 \times 10^{-19}} = 1.25 \times 10^{13} \text{ electrones} \]

1.2 Tres cargas puntuales de 8 μcoul, 3 μcoul y -5 μcoul están colocadas en los vértices de un triángulo rectángulo como se muestra en la figura. Cuál es la fuerza total sobre la carga de 3 μcoul.

\[F_1 = \frac{1}{4 \pi \varepsilon_0} \frac{(8 \times 10^{-6})(3 \times 10^{-6})}{(0.05)^2} = 86.4 \text{ nw} \]

\[F_2 = \frac{1}{4 \pi \varepsilon_0} \frac{(5 \times 10^{-6})(3 \times 10^{-6})}{(0.04)^2} = 84.4 \text{ nw} \]

\[\theta = \tan^{-1} \left(\frac{0.03}{0.04} \right) = 36.86^\circ \]
Capítulo 1. Ley de Coulomb

\[\vec{F} = \vec{F}_1 + \vec{F}_2 = F_x \hat{i} + F_y \hat{j} \]

\[F_x = -F_2 + F_1 \cos \theta \]

\[F_x = -84.4 + (86.4)(\cos 36.86) = -15.3 \text{ nw} \]

\[F_y = -F_y = -F_1 \sin \theta = -(86.4)(\sin 36.86) = -51.8 \text{ nw} \]

\[\vec{F} = -15.3 \hat{i} - 51.8 \hat{j} \text{ nw} \]

1.3 Dos esferas de corcho cargadas, cada una de 1 gm de masa, se cuelgan de hilos de 21 cm de longitud. El ángulo entre los hilos es de 12 °, y las esferas tienen cargas iguales \(Q \). Calcular el valor de \(Q \).

\[F_x - T_x = 0 \implies F_x = T_x \]

\[F_y = T \sin \frac{\theta}{2} \quad (1) \]

\[T_y - mg = 0 \implies T_y = mg \]

\[T \cos \frac{\theta}{2} = mg \quad (2) \]

Dividiendo las expresiones (1) entre (2),

\[F_x = mg \tan \frac{\theta}{2} \implies \frac{Q^2}{4 \pi \varepsilon_0 x^2} = mg \tan \frac{\theta}{2} \]

\[\frac{x}{2} = L \sin \frac{\theta}{2} \implies x = 2L \sin \frac{\theta}{2} \]

\[\frac{Q^2}{4 \pi \varepsilon_0 4L^2 \sin^2 \frac{\theta}{2}} = mg \tan \frac{\theta}{2} \]
Capítulo 1. Ley de Coulomb

\[Q^2 = 16 \pi \epsilon_0 L^2 \sin^2 \frac{\alpha}{2} mg \tan \frac{\beta}{2} \]

\[Q = 4L \sin \frac{\beta}{2} \sqrt{\pi \epsilon_0 mg \tan \frac{\beta}{2}} \]

\[Q = \left(4 \times 0.21 \times \sin 6^\circ \right) \sqrt{\left(\pi \times 8.85 \times 10^{-12}\right) \left(1 \times 10^{-3}\right) \left(9.8 \tan 6^\circ\right)} = 15 \times 10^{-9} \text{ coul} \]

1.4 Dos esferas muy pequeñas con cargas iguales Q se unen a un resorte de constante elástica K y su longitud sin deformar es despreciable. Cuando el sistema está en equilibrio, ¿cuál es la distancia entre las dos cargas?

La fuerza total que se ejerce sobre cualquiera de las esferas es

\[F = F_e - F_r \]

Siendo \(F_e \) la fuerza electrostática y \(F_r \) la fuerza elástica ejercida por el resorte.

Como las esferas se encuentran en equilibrio, \(F = 0 \), por lo tanto:

\[F_e = F_r \]

\[\frac{1}{4\pi \epsilon_0} \frac{Q^2}{x^2} = kx \]

\[x = \left(\frac{Q^2}{4\pi \epsilon_0 K} \right)^{\frac{1}{3}} \]
Capítulo 1. Ley de Coulomb

1.5 Tres cargas puntuales están a lo largo del eje X. Una carga \(Q_1 = 1 \, \text{mcoul} \) está en \(x = 1 \, \text{m} \) y una carga \(Q_2 = -2 \, \mu\text{coul} \) está en \(x = 2 \, \text{m} \). Dónde debe colocarse una tercera carga positiva \(Q_3 \) de modo que la fuerza resultante sobre ella sea cero.

\[
F_1 = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_3}{(1-x)^2}
\]

\[
F_2 = \frac{1}{4\pi\varepsilon_0} \frac{Q_2 Q_3}{(2-x)^2}
\]

\[
F_1 = F_2
\]

\[
\frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_3}{(1-x)^2} = \frac{1}{4\pi\varepsilon_0} \frac{Q_2 Q_3}{(2-x)^2}
\]

\[
\frac{Q_1}{(1-x)^2} = \frac{Q_2}{(2-x)^2}
\]

Resolviendo la ecuación se llega a,

\[
x = -1.41 \, \text{m}
\]
1.6 Se tienen tres cargas puntuales:

\[Q_1 = 1 \times 10^{-6} \text{ coul} \text{ P}_1(2, -1, 2) \text{ m} \]
\[Q_2 = -2 \times 10^{-6} \text{ coul} \text{ P}_2(1, 1, -2) \text{ m} \]
\[Q_3 = 3 \times 10^{-6} \text{ coul} \text{ P}_3(-2, 2, 2) \text{ m} \]

Determinar la fuerza total que se ejerce sobre la carga \(Q_3 \).
Capítulo 1. Ley de Coulomb

\[\vec{r}_{13} = -4\hat{i} + 3\hat{j} + 0\hat{k} \]

\[r_{13} = \sqrt{(-4)^2 + (3)^2 + (0)^2} = 5 \text{ m} \]

\[\vec{r}_{12} = \vec{r}_{13} - \vec{r}_{3} \]

\[\vec{r}_{32} = 3\hat{i} - \hat{j} - 4\hat{k} \]

\[r_{32} = \sqrt{(3)^2 + (-1)^2 + (-4)^2} = \sqrt{26} \text{ m} \]

\[\hat{u}_{13} = \frac{\vec{r}_{13}}{r_{13}} = \frac{-4\hat{i} + 3\hat{j} + 0\hat{k}}{5} \]

\[\hat{u}_{32} = \frac{\vec{r}_{32}}{r_{32}} = \frac{3\hat{i} - \hat{j} - 4\hat{k}}{\sqrt{26}} \]

\[\vec{F}_{13} = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_3}{r_{13}^2} \hat{u}_{13} \]

\[\vec{F}_{11} = \left(9 \times 10^9 \right) \left(1 \times 10^{-6} \right) \left(3 \times 10^{-6} \right) \left[\frac{-4\hat{i} + 3\hat{j} + 0\hat{k}}{5}\right] \]

\[\vec{F}_{13} = -8.64 \times 10^{-4} \hat{i} + 6.48 \times 10^{-4} \hat{j} + 0\hat{k} \text{ nw} \]

\[\vec{F}_{32} = \frac{1}{4\pi\varepsilon_0} \frac{Q_3 Q_2}{r_{32}^2} \hat{u}_{32} \]
1.7 Una carga puntual de $Q_1 = 300 \ \mu \text{coul}$, situada en (1, -1, -3) m experimenta una fuerza $\mathbf{F} = 8\mathbf{i} - 8\mathbf{j} + 4\mathbf{k} \ \text{nw}$, debida a la carga puntual Q_2 en (3, -3, -2) m. Determinar el valor de la carga Q_2.

$$\mathbf{F} = (9 \times 10^9)(300 \times 10^{-6}) \left[\frac{3\mathbf{i} - \mathbf{j} - 4\mathbf{k}}{\sqrt{26}} \right]$$

$$\mathbf{F}_{12} = 1.22 \times 10^{-3}\mathbf{i} - 4.07 \times 10^{-4}\mathbf{j} - 1.62 \times 10^{-3}\mathbf{k} \ \text{nw}$$

$$\mathbf{F}_3 = \mathbf{F}_{13} + \mathbf{F}_{32}$$

$$\mathbf{F}_3 = 3.56 \times 10^{-4}\mathbf{i} + 2.41 \times 10^{-4}\mathbf{j} - 1.62 \times 10^{-3}\mathbf{k} \ \text{nw}$$

$$8\mathbf{i} - 8\mathbf{j} + 4\mathbf{k} = (9 \times 10^9) \left(\frac{300 \times 10^{-6}}{9} \right) \left[-2\mathbf{i} + 2\mathbf{j} - \frac{1}{3}\mathbf{k} \right]$$

$$8\mathbf{i} - 8\mathbf{j} + 4\mathbf{k} = \left(-2 \times 10^5 \mathbf{i} + 2 \times 10^5 \mathbf{j} - 1 \times 10^5 \mathbf{k} \right)Q_2$$

$$8 = -2 \times 10^5 Q_2 \Rightarrow Q_2 = -4 \times 10^{-5} \ \text{coul}$$

$$-8 = 2 \times 10^5 Q_2 \Rightarrow Q_2 = -4 \times 10^{-5} \ \text{coul}$$

$$4 = -1 \times 10^5 Q_2 \Rightarrow Q_2 = -4 \times 10^{-5} \ \text{coul}$$

1.8 Determinar la fuerza electrostática sobre una carga puntual Q_O colocada a una distancia a del centro de un disco de radio R sobre el eje del mismo que tiene una carga total Q.

$$\mathbf{F}_3 = (9 \times 10^9) \left(\frac{Q_O}{a^2} \right) \left[\frac{3\mathbf{i} - \mathbf{j} - 4\mathbf{k}}{\sqrt{26}} \right]$$
Capítulo 1. Ley de Coulomb

\[\mathbf{dF} = dF_x \mathbf{i} + dF_y \mathbf{j} + dF_z \mathbf{k} \]

\[F_y = F_z = 0 \quad (\text{Por simetría}) \]

\[dF_x = dF \cos \theta \]

\[F_x = \int dF \cos \theta \quad \therefore \quad dF = \frac{1}{4\pi \varepsilon_0} \frac{Q_o dQ}{r^2} \]

\[F_x = \frac{Q_o}{4\pi \varepsilon_0} \int \frac{dQ}{r^2} \cos \theta \quad \therefore \quad \cos \theta = \frac{a}{r} \]

\[F_x = \frac{Q_o}{4\pi \varepsilon_0} \int \frac{dQ}{r^2} \cos \theta = \frac{Q_o}{4\pi \varepsilon_0} \int \frac{dQ}{r^2} \frac{a}{r} \]

\[F_x = \frac{\alpha Q_o}{4\pi \varepsilon_0} \int \frac{dQ}{r^2} = \frac{\alpha Q_o}{4\pi \varepsilon_0} \int \frac{dQ}{(a^2 + y^2)^{3/2}} \quad \therefore \quad Q = \frac{dQ}{A} \]

\[dQ = \frac{Q}{\pi R^2} \, dA \quad \Rightarrow \quad dQ = \frac{Q}{\pi R^2} \, dA \quad \therefore \quad dA = 2\pi y \, dy \]

\[F_x = \frac{\alpha Q_o Q}{4\pi^2 R^2 \varepsilon_0} \int \frac{2\pi y \, dy}{(a^2 + y^2)^{3/2}} = \frac{\alpha Q_o Q}{2\pi R^2 \varepsilon_0} \int_0^R \frac{y \, dy}{(a^2 + y^2)^{3/2}} \]

\[F = \frac{Q_o Q a}{2\pi R^2 \varepsilon_0} \left[1 - \frac{1}{\sqrt{a^2 + R^2}} \right] \]
1.9 Dos pequeñas bolas metálicas idénticas portan cargas de 3 nanocoul y -12 nanocoul. Están separadas 3 cm. a) calcúlese la fuerza de atracción, b) las bolas se juntan y después se separan a 3 cm. Determine las fuerzas que ahora actúan sobre ellas.

a) \[F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{d^2} \]

\[F = \left(9 \times 10^9\right) \frac{\left(3 \times 10^{-9}\right)\left(12 \times 10^{-9}\right)}{(0.03)^2} = 3.6 \times 10^{-4} \text{ nw (atracción)} \]

b) \[Q = Q_1 + Q_2 \]

\[Q = 3 \times 10^{-9} - 12 \times 10^{-9} = -9 \times 10^{-9} \text{ coul} \]

\[Q_1 = Q_2 = -4.5 \times 10^{-9} \text{ coul} \]

\[F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{d^2} \]

\[F = \left(9 \times 10^9\right) \frac{\left(4.5 \times 10^{-9}\right)\left(4.5 \times 10^{-9}\right)}{(0.03)^2} = 2 \times 10^{-4} \text{ nw (repulsión)} \]

1.10 Una carga puntual \(Q_1 = 1 \times 10^{-7} \text{ coul} \), está fija en la base de un plano que forma un ángulo \(q \) con la dirección horizontal. En una ranura lisa y sin fricción del plano, se coloca una pelotita de 2 gm de masa, y con una carga de \(1 \times 10^{-7} \text{ coul} \); el plano se prolonga directamente hasta la carga fija. A qué ángulo \(q \) se debe inclinar el plano para que la pelotita quede en equilibrio a una distancia de 10 cm, de la carga fija.
Capítulo 1. Ley de Coulomb

\[F_e - mg \sin \theta = 0 \]
\[F_e = mg \sin \theta \]
\[\frac{1}{4 \pi \varepsilon_0} \frac{Q_1 Q_2}{L^2} = mg \sin \theta \]

\[\sin \theta = \frac{1}{4 \pi \varepsilon_0} \frac{Q_1 Q_2}{mg L^2} \]

\[\sin \theta = \left(9 \times 10^9\right) \left(\frac{1 \times 10^{-9}}{2 \times 10^{-3}}\right) \left(9.8\right) \left(0.1\right) = 0.459 \]

\[\theta = \sin^{-1} \left(0.459\right) = 27.3^\circ \]
1. Se tiene un sistema de cargas puntuales colocadas en los vértices de un triángulo equilátero de 10 cm de lado. Los valores de las cargas son las siguientes:

\[Q_1 = 1 \times 10^6 \text{ coul} \]
\[Q_2 = -2 \times 10^6 \text{ coul} \]
\[Q_3 = -4 \times 10^6 \text{ coul} \]

Hallar la fuerza total que se ejerce sobre \(Q_3 \) debido a las demás cargas.

Respuesta: \[\mathbf{F} = -6.23 \hat{j} \text{ N} \]

2. Se tiene un sistema de cuatro cargas puntuales colocadas en el espacio. Los valores de las cargas y sus posiciones son las siguientes:

\[Q_1 = 1 \times 10^6 \text{ coul en } P_1(1,2,3) \text{ m} \]
\[Q_2 = -2 \times 10^6 \text{ coul en } P_2(0,-1,4) \text{ m} \]
\[Q_3 = -4 \times 10^6 \text{ coul en } P_3(-1,-2,3) \text{ m} \]
\[Q_4 = 3 \times 10^6 \text{ coul en } P_4(2,1,0) \text{ m} \]

Hallar la fuerza total que se ejerce sobre \(Q_1 \) debido a las demás cargas.

Respuesta: \[\mathbf{F} = -2.04 \times 10^3 \hat{i} - 2.36 \times 10^{-3} \hat{j} + 2.72 \times 10^{-3} \hat{k} \text{ N} \]

3. Dos esferas iguales de masa \(m \) están colgando de hilos de seda de longitud \(L \) y tienen cargas iguales \(Q \). Suponga que el ángulo que se forma entre los hilos es muy pequeño. Determine la distancia de equilibrio entre las esferas.
Capítulo 1. Ley de Coulomb

Respuesta:
\[x = \left[\frac{Q^2 L}{2\pi \varepsilon_0 \text{mg}} \right]^{\frac{1}{2}} \]

4- Dos cargas iguales Q están ubicadas en el eje Y a una distancia +a y -a del origen.

a) Hallar la fuerza total que se ejerce sobre una carga Q₀ colocada sobre el eje X a una distancia x del origen.

b) Hallar la distancia x que debe colocar la carga Q₀ para que la fuerza total sobre ella sea máxima.

Respuesta:
\[F = \frac{2QQ_0}{4\pi \varepsilon_0 \left(a^2 + x^2 \right)^{\frac{3}{2}}} \]
\[x = \pm \frac{a}{\sqrt{2}} \]

5- A dos esferas pequeñas de plástico se les proporciona una carga eléctrica positiva. Cuando están a 15 cm de distancia una de la otra, la fuerza de repulsión entre ellas tiene una magnitud de 0.22 N. ¿Qué carga tiene cada esfera? a) si las dos cargas son iguales? b) si una esfera tiene cuatro veces más carga que la otra?

Respuesta:

a) \(Q = 7.42 \times 10^{-7} \text{ coul} \) cada esfera
b) \(Q_1 = 3.71 \times 10^{-7} \text{ coul} \), \(Q_2 = 1.48 \times 10^{-6} \text{ coul} \)

6- Se tienen dos cargas puntuales Q₁ y Q₂, separadas una distancia d. En qué punto se debe colocar una tercera carga Q₀ para que la fuerza sobre ella sea nula.

Respuesta:
\[x = \frac{d\sqrt{Q_2}}{\sqrt{Q_1} + \sqrt{Q_2}} \]

7- En el modelo de Bohr del átomo de hidrógeno, un electrón gira alrededor de un protón, en una órbita de radio 5.3 x 10⁻¹¹ m. a) Determine la fuerza centrípeta necesaria para mantener al electrón en órbita y b) la velocidad tangencial del electrón.
Respuesta:

a) \(F = 8.2 \times 10^{-8} \text{ Nw} \)
b) \(v = 2.2 \times 10^6 \text{ m/s} \)

8- Se coloca una carga \(Q_0 \) en el eje de un anillo delgado de radio \(R \) que lleva una carga total \(Q \), distribuida uniformemente en su circunferencia.
a) Si \(Q_0 \) está a una distancia \(x \) del centro del anillo, hallar la fuerza que experimenta \(Q_0 \).
b) A qué distancia del centro del anillo debe colocarse la carga \(Q_0 \) para que experimente la máxima fuerza.

Respuesta:

a) \(F = \frac{Q Q_0}{4 \pi \varepsilon_0 \left(R^2 + x^2\right)^{3/2}} \)
b) \(x = \pm \frac{R}{\sqrt{2}} \)

9- En la figura se muestra un dispositivo de laboratorio que puede servir para medir cargas eléctricas. Si la separación entre las esferas cuando están descargadas es \(L \), determinar:
a) La ecuación que permite calcular \(Q \) en función de \(x \) cuando las cargas en las esferas son iguales y de signo contrario.
b) La carga máxima que puede medirse en estas condiciones
c) Que pasa si \(Q > Q_{\text{máx}} \)

Respuesta:

a) \(Q = \sqrt{4 \pi \varepsilon_0 K \left(L^2 - x^2\right)} \)
b) \(Q_{\text{máx}} = \sqrt{\frac{4}{27} 4 \pi \varepsilon_0 KL^3} \)

10- Una partícula de carga \(q \) se encuentra en la mitad del camino entre dos cargas fijas de valor \(Q \) y del mismo signo, separadas una distancia \(2b \), como se muestra en la figura. a) Cuál es la fuerza en \(q \), b) suponga que ésta partícula se desplaza de su posición original en una cantidad y hacia la derecha, ¿cuál será la magnitud de la fuerza sobre la carga \(q \) en esa nueva posición?, c) si \(y << b \) y se suelta de esa nueva posición, analice qué tipo de movimiento tiene y determine la frecuencia angular \(\omega \)
Respuesta:

a) \(F = 0 \)

b) \(F = \frac{b y Q q}{\pi \varepsilon_0 \left(b^2 - y^2 \right)} \)

c) \(\omega = \frac{Q q}{\pi \varepsilon_0 m b^3} \)
Capítulo 2

Campo Eléctrico

ROBERT A. MILLIKAN
1868 - 1953 USA
2.1 Introducción

La ley de Coulomb es un ejemplo de lo que se conoce como una ley de acción a distancia. Proporciona una manera directa de calcular la fuerza sobre una carga dada cuando se conoce su posición relativa con respecto a la carga fuente. La ley de Coulomb no incluye la descripción de cómo "sabe" la primera carga que la otra se encuentra ahí. Por ejemplo, si se varía la posición de la carga fuente, la fuerza ejercida sobre la otra carga también varía y se obtiene nuevamente por la ley de Coulomb. Esto implica que la variación ocurre instantáneamente, pero no hay indicación de cómo se pasa a este estado alterado. Como resultado de estas y otras consideraciones similares, se ha encontrado conveniente y útil realizar una división mental de la interacción entre ambas cargas para presentar dos aspectos: primero, se asume que la carga fuente produce "algo" sobre el punto del espacio y, segundo, que este "algo" actúa sobre la carga que se encuentra en el punto del espacio, produciendo de esta manera la fuerza que actúa sobre ella. Este "algo" que funciona como una especie de intermediario entre las dos cargas, recibe el nombre de Campo Eléctrico y es lo que se va a estudiar en este capítulo.

Antes de definir Campo Eléctrico es conveniente conocer dos tipos de campos muy importantes que son: Campo escalar y Campo vectorial.

2.2 Campo escalar

Si a cada punto (x,y,z) de una región del espacio se le puede asociar un escalar ψ(x,y,z), hemos definido un campo escalar ψ. La función ψ depende, pues, del punto \(\mathbf{r}(x,y,z) \) y, por ello, se llama Función escalar de posición; o bien función de punto escalar. Por ejemplo, las temperaturas en cada punto interior o sobre la superficie de la tierra en un cierto instante definen una función escalar.

Si un campo escalar es independiente del tiempo, se le llama permanente o estacionario.
2.3 Campo vectorial

Si a cada punto \((x,y,z)\) de una región del espacio se le puede asociar un vector \(\vec{V}(x,y,z)\), hemos definido un campo vectorial \(\vec{V}\)

La función \(\vec{V}\) depende, pues, del punto \(\vec{r}\) y, por ello, se llama función vectorial de posición, o bien función de punto vectorial. Por ejemplo, las velocidades en cada punto \((x,y,z)\) en el interior de un fluido en movimiento, en un cierto instante, definen un campo vectorial. Si un campo vectorial es independiente del tiempo se llama permanente o estacionario.

2.4 Campo eléctrico

En el capítulo anterior se observó que entre dos cuerpos electrizados se producen fuerzas de origen eléctrico, aun sin que haya contacto directo entre dichos cuerpos; por mucho tiempo se ha buscado, sin lograr encontrarla, la explicación de la forma en que se producen estas fuerzas a distancia; existen varias hipótesis sobre la forma en que se producen, pero ninguna cubre todas las posibilidades; los físicos han preferido establecer una definición, que sin explicar el fenómeno, permita construir un puente matemático que salva el escollo; esta definición es la del Campo Electrostático o más simplemente Campo Eléctrico.

No se discute aquí el carácter de la cuantización de estos campos que de hecho dan una mayor explicación de la interacción a distancia.

James Clerk Maxwell, define el campo eléctrico en la siguiente forma: “El campo eléctrico es la porción del espacio, en la vecindad de los cuerpos electrizados, en la cual se manifiestan fenómenos eléctricos”; al cuerpo eléctrico se le atribuyen propiedades necesarias para que produzca los fenómenos eléctricos.

Se entiende desde este punto de vista que el campo en general es una modificación del espacio, debido a las propiedades fundamentales de la materia como por ejemplo la carga y la masa.
2.5 Intensidad del campo eléctrico

La intensidad del campo eléctrico en un punto del espacio es la manifestación de que la materia está cargada y se define como la fuerza ejercida sobre una carga de prueba \(Q_0 \) positiva colocada en ese punto.

Fig. 2.1 La dirección del campo eléctrico es la misma de la fuerza electrostática.

La dirección y sentido de la intensidad del campo eléctrico es el mismo de la fuerza electrostática.

De manera pues que matemáticamente, la intensidad del campo eléctrico se expresa como:

\[
\vec{E} = \frac{\vec{F}}{Q_0}
\] (2.1)

Como la carga de prueba crea su propio campo eléctrico, entonces éste se adicionaría al campo eléctrico que se quiere medir producido por la carga \(Q \); por tal motivo las condiciones de medida se alteran; para evitar esto, se toma la carga de prueba \(Q_0 \) lo más pequeña posible para que el campo eléctrico producido por ella sea prácticamente insignificante y no altere la medida; en consecuencia, la intensidad del campo eléctrico se define de la siguiente manera:

\[
\vec{E} = \lim_{\alpha \to 0} \left(\frac{\vec{F}}{Q_0} \right)
\] (2.2)

Aunque según se observó en el capítulo anterior en lo relativo a la cuantización de la carga eléctrica, existe un límite para la mínima carga que viene a ser la carga del electrón \(e \).
2.6 Sistemas de unidades

a) SISTEMA CGS
F: Dina
Q_0: Stat Coulomb (stc)
E: Dina/stc

b) SISTEMA MKS
F: Newton
Q_0: Coulomb (coul)
E: nw/coul

Teniendo en cuenta la fuerza electrostática de Coulomb.

\[
\vec{F} = \frac{1}{4\pi \varepsilon_0} \frac{QQ_0}{r^2} \vec{U}_r
\]

y reemplazando en la expresión (2.1), se obtiene que, la intensidad del campo eléctrico debido a una carga puntual Q en un punto R viene dado por:

\[
\vec{E} = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \vec{U}_r
\]

(2.3)

Supongamos ahora que la carga puntual Q que produce el campo eléctrico no se encuentra en el origen de un sistema de referencia (Fig 2.2). Entonces, el campo eléctrico en el punto P viene dado por la siguiente expresión:

\[
\vec{E} = \frac{1}{4\pi \varepsilon_0} \frac{Q}{|\vec{R} - \vec{R}'|^2} (\vec{R} - \vec{R}')
\]

(2.4)
2.7 Líneas de fuerza

Una línea de fuerza indica la dirección de la fuerza que se ejerce sobre una carga de prueba positiva introducida en el campo. Si se suelta la carga, ésta se mueve en la dirección de la línea de campo.

El campo eléctrico se representa gráficamente por medio de líneas de fuerza, que deben cumplir con lo siguiente:

a) La tangente a una línea de fuerza en un punto cualquiera muestra la dirección de la intensidad del campo eléctrico en ese punto (Fig 2.3).
Capítulo 2. Campo Eléctrico

b) Las líneas de fuerza se dibujan de manera que el número de ellas por unidad de área de sección transversal sea proporcional a la magnitud de la intensidad del campo eléctrico (Fig 2.4).

![Fig 2.4 La densidad de líneas de fuerza es proporcional a la magnitud del campo eléctrico.](image)

Las líneas de fuerza nunca se cruzan, puesto que si esto ocurriera, en ese punto donde se cruzan existirían dos direcciones de la intensidad del campo eléctrico, lo cual sería un absurdo.

Las líneas de fuerza producidas por una carga puntual positiva se dirigen radialmente hacia afuera, alejándose de la carga, ya que, una carga de prueba Q_0 positiva colocada en un punto cercano tendería a alejarse de la carga que produce el campo eléctrico (Fig 2.5).

![Fig. 2.5 Las líneas de fuerza producidas por una carga positiva se alejan de dicha carga radialmente.](image)
Las líneas de fuerza producidas por una carga puntual negativa se dirigen radialmente hacia dicha carga, ya que, una carga de prueba Q_0 positiva colocada en un punto cercano tendería a acercarse a la carga que produce el campo eléctrico (Fig 2.6).

![Fig. 2.6 Las líneas de fuerza producidas por una carga negativa se dirigen radialmente hacia dicha carga.](image)

Líneas de fuerza producidas por dos cargas puntuales de diferente signo cercanas entre sí (Fig 2.7).

![Fig. 2.7 Las líneas de fuerza producidas por un par de cargas de diferente signo se dirigen de la carga positiva hacia la negativa.](image)
Capítulo 2. Campo Eléctrico

Líneas de fuerza producidas por dos cargas puntuales de igual signo cercanas entre sí (Fig 2.8).

Fig. 2.8 Las líneas de fuerza producidas por un par de cargas de igual signo (cargas positivas).

Líneas de fuerza producidas por una lámina cargada de dimensiones infinitas (Fig 2.9).

Fig. 2.9 Las líneas de fuerza producidas por una lámina cargada de dimensiones infinitas.
Las láminas infinitas o varillas infinitas no es que existan en realidad; sólo son conceptos para dar a entender que la carga de prueba Q_0 se coloca en puntos muy cercanos a esos cuerpos de tal forma que las distancias a ellos son insignificantes con respecto a las dimensiones de esos cuerpos.

2.8 Cálculo de \vec{E} debido a un grupo de cargas puntuales

Puesto que el campo eléctrico de una carga puntual es función lineal del valor de la carga, se deduce que los campos de más de una carga puntual se pueden superponer linealmente por medio de una suma vectorial, esto es, el principio de superposición aplicado a los campos eléctricos: El campo eléctrico total o resultante en un punto es la suma vectorial de los campos eléctricos componentes individuales en el punto.

Supongamos que en una región del espacio hay n cargas puntuales como se muestra en la figura 2.10.

![Figura 2.10 Campo eléctrico debido a un sistema de cargas puntuales.](image)

Para hallar la intensidad del campo eléctrico total en el punto P debido a todas las cargas se utiliza el principio de superposición; o sea:

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \ldots + \vec{E}_n$$
Capítulo 2. Campo Eléctrico

$$\vec{E} = \sum_{i=1}^{n} \vec{E}_i$$

Entonces, teniendo en cuenta la ecuación (2.3), se obtiene,

$$\vec{E} = \sum_{i=1}^{n} \frac{1}{4\pi \varepsilon_0} \frac{Q_i}{r_i^2} \hat{u}_i$$ \hspace{1cm} (2.5)

Siendo \(\hat{u}_i \), el vector unitario que da la dirección del campo eléctrico \(\vec{E} \).

2.9 Cálculo de \(\vec{E} \) debido a una distribución continua de carga

Consideremos un cuerpo macroscópico con una carga total \(Q \), como se muestra en la figura 2.11. Se divide la carga en elementos infinitesimales \(dQ \), entonces, la intensidad del campo eléctrico en el punto \(P \) debido a \(dQ \) viene dado por

$$d\vec{E} = \frac{1}{4\pi \varepsilon_0} \frac{dQ}{|\vec{R} - \vec{R}'|^2} \frac{(\vec{R} - \vec{R}')}{|\vec{R} - \vec{R}'|}$$

entonces,

$$\vec{E} = \int \frac{1}{4\pi \varepsilon_0} \frac{dQ}{|\vec{R} - \vec{R}'|^2} \frac{(\vec{R} - \vec{R}')}{|\vec{R} - \vec{R}'|}$$ \hspace{1cm} (2.6)
2.10 Densidad de carga

2.10.1 Densidad volumétrica de carga

Se define como la carga almacenada en el cuerpo por unidad de volumen.

\[\rho = \frac{dQ}{dv} \quad [\text{Coul/m}^3] \quad (2.7) \]

2.10.2 Densidad Superficial de Carga

Se define como la carga almacenada en el cuerpo por unidad de área o superficie.

\[\sigma = \frac{dQ}{dA} \quad [\text{Coul/m}^2] \quad (2.8) \]

2.10.3 Densidad Lineal de Carga

Se define como la carga almacenada en el cuerpo por unidad de longitud.

\[\lambda = \frac{dQ}{dL} \quad [\text{Coul/m}] \quad (2.9) \]
Capítulo 2. Campo Eléctrico

2.11 Dipolo eléctrico

El dipolo eléctrico es un sistema formado por dos cargas puntuales de igual magnitud pero de signo contrario separadas por una distancia \(d \); (Fig 2.12).

![Fig. 2.12 Dipolo eléctrico.](image)

2.12 Momento de dipolo eléctrico

El momento de dipolo eléctrico se puede considerar como un vector \(\vec{p} \); cuya magnitud es \(Qd \) y su dirección va de la carga negativa a la carga positiva; (Fig 2.13).

![Fig. 2.13 Momento del Dipolo eléctrico.](image)

Coloquemos un dipolo eléctrico dentro de un campo eléctrico externo uniforme \(\vec{E} \). Como se muestra en la figura 2.14.

![Fig. 2.14 Dipolo eléctrico colocado dentro de un campo eléctrico externo constante.](image)
Al colocar un dipolo eléctrico dentro de un campo eléctrico constante, sobre cada carga se ejerce una fuerza en sentido contrario pero de igual magnitud produciendo un par que hace que sobre el dipolo actúe un momento con respecto al punto O.

$$
\vec{M} = \vec{M}_1 + \vec{M}_2
$$

$$
\vec{M}_1 = F \left(\frac{d}{2} \right) \sin \theta
$$

$$
\vec{M}_2 = F \left(\frac{d}{2} \right) \sin \theta
$$

pero,

$$
F = E Q
$$

$$
\vec{M} = E Q d \sin \theta
$$

donde

$$
P = Q d
$$

por lo tanto:

$$
\vec{M} = P \vec{E} \sin \theta
$$

De lo anterior se concluye que un dipolo eléctrico colocado dentro de un campo eléctrico uniforme externo experimenta un torque que tiende alinearlo en la dirección del campo. En forma vectorial:

$$
\vec{M} = \vec{P} \times \vec{E}
$$

(2.10)

En la figura 2.15 se muestra la dirección y el sentido del vector momento o torque.
Debe hacerse trabajo para girar el dipolo eléctrico desde un ángulo θ_0 hasta un ángulo θ. Este trabajo queda almacenado como energía potencial U en el sistema formado por el dipolo eléctrico y el campo eléctrico.

$$W = \int_{\theta_0}^{\theta} M \, d\theta$$

$$W = \int_{\theta_0}^{\theta} P \varepsilon \, \sin \theta \, d\theta$$

$$W = P \varepsilon \int_{\theta_0}^{\theta} \sin \theta \, d\theta$$

$$W = P \varepsilon (-\cos \theta)_{\theta_0}^{\theta}$$

$$W = P \varepsilon (\cos \theta - \cos \theta_0)$$

Haciendo $\theta_0 = 90^\circ$ (ángulo de referencia), donde $U_0 = 0$,

$$W = -P \varepsilon \cos \theta$$

pero el trabajo hecho queda almacenado como energía potencial,

$$W = U_0 - U$$

$$U = -P \varepsilon \cos \theta$$
En forma vectorial:

\[\mathbf{U} = -\mathbf{P} \cdot \mathbf{E} \quad (2.11) \]

2.13 Experimento de la gota de aceite de Millikan

En una brillante serie de investigaciones realizadas en la Universidad de Chicago, durante el período comprendido entre 1909 y 1913, Robert Andrews Millikan no solo demostró de modo concluyente la naturaleza discreta de la carga eléctrica, sino que midió realmente la carga de un electrón.

El esquema básico del aparato de Millikan es el que se muestra en la figura 2.16.

![Fig. 2.16 Aparato de la gota de aceite de Robert Millikan.](image)

Dos láminas metálicas horizontales, exactamente paralelas, se hallan aisladas entre sí y separadas algunos milímetros. Mediante un pulverizador se esparcen finas gotas de aceite sobre la lámina superior y se deja que algunas de ellas caigan a través de un pequeño orificio practicado en la misma. Se dirige un haz de luz horizontal entre ambas láminas y se dispone un anteojito con su eje perpendicular al haz luminoso.

Las gotas de aceite iluminadas por el haz aparecen, cuando se mira por el antejoito, como minúsculos puntos brillantes que descienden lentamente bajo la acción conjunta de su peso, del empuje del aire y de la fuerza de viscosidad que se oponen a su movimiento.

Se observa que algunas de las gotas de aceite adquieren carga eléctrica, debido probablemente, a efectos de rozamiento con la boquilla del
Capítulo 2. Campo Eléctrico

pulverizador. También pueden cargarse las gotas ionizando el aire dentro del aparato por medio de rayos X o de una minúscula partícula radiactiva.

Algunos de los electrones o iones chocan con las gotas y se adhieren a ellas. Generalmente, la carga de las gotas es negativa, pero a veces se encuentra alguna cargada positivamente.

En principio, el método más sencillo para medir la carga de una gota es el siguiente:

Supóngase una gota con carga negativa y que las láminas se mantengan a una diferencia de potencial tal que dentro de ellas exista un campo eléctrico constante. Se varía la diferencia de potencial hasta lograr que la gota quede suspendida en reposo entre las láminas.

a) Cuando existe campo eléctrico, el diagrama de fuerzas sobre una gota es como se muestra en la figura 2.17.

Fig. 2.17 Diagrama de fuerzas sobre la gota cargada.
Capítulo 2. Campo Eléctrico

\[F + B = m \, g \]
\[F = E \, Q \]
\[E \, Q + B = m \, g \]

\[Q = \frac{m \, g - B}{E} \]

\[m = \delta_a \, V \]
\[B = \omega \, V \]

\[Q = \frac{\delta_a \, V \, g - \omega \, V}{E} \]

\[Q = \frac{V \, (\delta_a \, g - \omega)}{E} \]

donde,

- \(V \): Volumen de la gota de aceite
- \(\delta_a \): Densidad del aceite
- \(\omega \): Peso específico del aire
- \(g \): Gravedad

se sabe que,

\[\omega = \delta \, g \]

\[V = \frac{4}{3} \pi \, r^3 \]

donde,

- \(\delta \): Densidad del aire
Capítulo 2. Campo Eléctrico

entonces,

\[
Q = \frac{4 \pi r^2 (\delta_n - \delta)}{E} \quad (1)
\]

b) Cuando se desconecta la fuente, el campo eléctrico se hace cero; la gota cae a una velocidad máxima constante \(v\).

EL diagrama de fuerzas sobre la gota cuando cae con velocidad constante, es como se muestra en la figura 2.18.

\[f + B = mg\]

donde,

\(f\) : Fuerza de fricción

![Figura 2.18 Diagrama de fuerzas sobre la gota cargada cuando cae con velocidad constante.]

El valor de \(f\) se calcula con la siguiente expresión llamada ley de Stokes:

\[f = 6 \pi \eta r v\]

siendo,

\(\eta\) : Coeficiente de viscosidad del aire
\(r\) : Radio de la gota
\(v\) : Velocidad
entonces,

$$6 \pi \eta r v + \omega V = m g$$

$$6 \pi \eta r v + \delta g V = \delta_a V g$$

$$6 \pi \eta r v + \frac{4}{3} \pi r^3 \delta g = \frac{4}{3} \pi r^3 \delta_a g$$

despejando r de la ecuación anterior,

$$r = \sqrt[3]{\frac{9 \eta v}{2 g (\delta_a - \delta)}} \quad (2)$$

reemplazando la ecuación (2) en la ecuación (1), se obtiene,

$$Q = \frac{18 \pi V}{E} \sqrt[3]{\frac{\eta^3 v^3}{2 g (\delta_a - \delta)}}$$

teniendo en cuenta la expresión siguiente que se verá con más detalle en el próximo capítulo;

$$E = \frac{V}{d}$$

donde,

V: Diferencia de potencial entre placas

d: Distancia de separación entre placas

Por lo tanto, la carga de la gota de aceite se calcula por la siguiente expresión:

$$Q = \frac{18 \pi d \eta^3 v^3}{V} \sqrt[3]{\frac{1}{2 g (\delta_a - \delta)}} \quad (2.12)$$
2.1 Se tienen dos cargas puntuales $Q_1 = 1 \times 10^6$ coul y $Q_2 = -2 \times 10^6$ coul colocadas en los vértices de un triángulo equilátero, como se muestra en la figura. Determinar la intensidad del campo eléctrico en el vértice recto.

$$E_1 = \frac{1}{4\pi\varepsilon_0} \frac{Q_1}{a^2} = 9 \times 10^9 \frac{1 \times 10^{-6}}{(0.03)^2} = 1 \times 10^7 \text{ newton/metro}$$

$$E_2 = \frac{1}{4\pi\varepsilon_0} \frac{Q_2}{b^2} = 9 \times 10^9 \frac{2 \times 10^{-6}}{(0.04)^2} = 1.125 \times 10^7 \text{ newton/metro}$$

$$\vec{E} = E_x \hat{i} + E_y \hat{j}$$

$$E_x = E_2 = 1.125 \times 10^7 \text{ newton/metro}$$

$$E_y = -E_1 = -1 \times 10^7 \text{ newton/metro}$$

$$E = \sqrt{E_x^2 + E_y^2} = \sqrt{(1.125 \times 10^7)^2 + (-1 \times 10^7)^2} = 1.5 \times 10^7 \text{ newton/metro}$$
Capítulo 2. Campo Eléctrico

\[\phi = \arctan \left(\frac{E_y}{E_x} \right) = \arctan \left(\frac{1 \times 10^7}{1.125 \times 10^7} \right) = 41.6^\circ \]

2.2 Se tienen dos cargas puntuales localizadas en el espacio. Determine la intensidad del campo eléctrico en el punto P(2,-2,3) m.

\[Q_1 = 1 \times 10^6 \text{ coul en el punto P}_1(1,2,-1) \text{ m} \]
\[Q_2 = -2 \times 10^6 \text{ coul en el punto P}_2(2,-2,0) \text{ m} \]

\[\vec{r}_1 = \hat{i} + 2 \hat{j} - \hat{k} \]
\[\vec{r}_2 = 2\hat{i} - 2\hat{j} + 0\hat{k} \]
\[\vec{r}_p = 2\hat{i} - 2\hat{j} + 3\hat{k} \]

\[\vec{u}_1 = \frac{\vec{r}_p - \vec{r}_1}{|\vec{r}_p - \vec{r}_1|} \]

\[\vec{u}_1 = \frac{3\hat{i} - 4\hat{j} + 4\hat{k}}{\sqrt{(3)^2 + (-4)^2 + (4)^2}} = \frac{3\hat{i} - 4\hat{j} + 4\hat{k}}{\sqrt{41}} \]

\[\vec{u}_2 = \frac{\vec{r}_p - \vec{r}_2}{|\vec{r}_p - \vec{r}_2|} \]

\[\vec{u}_2 = \frac{0\hat{i} - 0\hat{j} - 3\hat{k}}{\sqrt{(0)^2 + (0)^2 + (-3)^2}} = \frac{-3\hat{k}}{3} = -\hat{k} \]

\[\vec{E}_1 = \frac{1}{4 \pi \varepsilon_0} \frac{Q_1}{r^2} \vec{u}_1 \]

\[r_p = |\vec{r}_p - \vec{r}_1| = \sqrt{41} \text{ m} \]
Capítulo 2. Campo Eléctrico

\[\vec{E}_1 = \left(9 \times 10^9\right) \left(1 \times 10^{-4}\right) \frac{3\hat{i} - 4\hat{j} + 4\hat{k}}{\sqrt{41}} = 102.9\hat{i} - 137.2\hat{j} + 137.2\hat{k} \text{ nw/coul} \]

\[\vec{E}_2 = \frac{1}{4 \pi \varepsilon_0} \frac{Q_2}{r_2^2} \hat{u}_2 \]

\[r_{12} = |\vec{r}_2 - \vec{r}_1| = 3 \text{ m} \]

\[\vec{E}_2 = \left(9 \times 10^9\right) \left(2 \times 10^{-5}\right) \frac{-\hat{k}}{9} = -2000 \hat{k} \text{ nw/coul} \]

\[\vec{E} = \vec{E}_1 + \vec{E}_2 \]

\[\vec{E} = 102.9\hat{i} - 137.2\hat{j} - 1862.8\hat{k} \text{ nw/coul} \]

2.3 Determinar el campo eléctrico debido a una carga puntual de 1.4 \(\mu \text{coul} \) a una distancia de 0.1 m de la carga. Cuál es la fuerza sobre una carga \(Q_1 = 1.2 \mu \text{coul} \) colocada a esa distancia?

\[\vec{E} = \frac{1}{4 \pi \varepsilon_0} \frac{Q}{r^2} = \left(9 \times 10^9\right) \frac{1.4 \times 10^{-4}}{(0.1)^2} = 1.26 \times 10^6 \text{ nw/coul} \]

\[F = EQ = \left(1.26 \times 10^6\right)(-1.2 \times 10^{-6}) = -1.512 \text{ nw} \]

2.4 Se tienen tres cargas colocadas en línea: \(Q_1 = 2 \mu \text{coul} \) en \(x_1 = -2 \text{ cm} \); \(Q_2 = 3 \mu \text{coul} \) en \(x_2 = 4 \text{ cm} \) y \(Q_3 = -2 \mu \text{coul} \) en \(x_3 = 10 \text{ cm} \). Determinar el campo eléctrico en el origen del sistema de coordenadas.
Capítulo 2. Campo Eléctrico

\[E_1 = \left(9 \times 10^9\right) \frac{2 \times 10^{-8}}{(0.02)^2} = 45 \times 10^4 \ \text{nw/coul} \]

\[E_2 = \left(9 \times 10^9\right) \frac{3 \times 10^{-8}}{(0.04)^2} = 16875000 \ \text{nw/coul} \]

\[E_3 = \left(9 \times 10^9\right) \frac{2 \times 10^{-8}}{(0.1)^2} = 1.8 \times 10^6 \ \text{nw/coul} \]

\[E = E_1 + E_3 - E_2 \]

\[E = 45 \times 10^4 + 1.8 \times 10^6 - 16875000 = 29925000 \ \text{nw/coul} \]

2.5 Un cuadripolo consta de dos dipolos próximos entre sí como se muestra en la figura. a) Hallar el valor del campo eléctrico en un punto sobre el eje \(x \) a gran distancia de manera que \(x >> a \), b) hallar el valor del campo eléctrico en un punto sobre el eje \(y \) de tal manera que \(y >> a \).

\[E_x = E_1 \cos \theta + E_2 \cos \theta - E_3 = 2K \frac{Q}{r^2} \cos \theta - E_1 \implies \cos \theta = \frac{x}{r} \quad \text{y} \quad E_1 = E_2 \]
Capítulo 2. Campo Eléctrico

$$E_x = 2K \frac{Q}{x^2 + a^2} - K \frac{2Q}{x^2} - \frac{2KQx}{(x^2 + a^2)^{3/2}} - \frac{2KQ}{x^2}$$

Como $x \gg a$, utilizando los dos primeros términos de la serie:

$$(1 + X)^n \approx 1 + nX \quad \therefore \quad X = \frac{a^2}{x^2}$$

$$E_x = \frac{2KQx}{(1 + \frac{a^2}{x^2})^{3/2}} - \frac{2KQ}{x^2} - \frac{2KQ}{x^2} \left(1 + \frac{1}{3} \frac{a^2}{2x^2} - 1\right) = \frac{2KQ}{x^2} \left(1 - \frac{3a^2}{2x^2}\right) = -\frac{3KQa^2}{x^4}$$

$$\vec{E} = \frac{-3KQa^2}{x^4} \hat{i}$$

b) $E_1 = K \frac{Q}{(y - a)^2}$, $E_2 = K \frac{Q}{(y + a)^2}$, $E_3 = K \frac{2Q}{y^2}$

$$F_y = K \frac{Q}{(y - a)^2} + K \frac{Q}{(y + a)^2} - K \frac{2Q}{y^2}$$

$$E_y = KQ \left[\frac{1}{(y - a)^2} + \frac{1}{(y + a)^2} - \frac{2}{y^2}\right]$$

$$E_z = KQ \left[\frac{(y + a)^2 + (y - a)^2}{(y^2 - a^2)^2} - \frac{2}{y^2}\right]$$

$$\vec{E} = 6KQ \frac{a^2}{y^4} \hat{j}$$
2.6 Determinar el campo eléctrico en el punto P situado a una distancia R de una varilla infinita aislante que tiene una densidad lineal de carga constante λ.

\[dE_x = \frac{dQ}{4\pi \varepsilon_0 R^2} \cos \theta \]

\[dE_y = \frac{dQ}{4\pi \varepsilon_0 R^2} \sin \theta \]

\[\sin \theta = \frac{R}{r}; \quad r = \sqrt{R^2 + x^2} \]

\[E_x = \int \frac{1}{4\pi \varepsilon_0} \frac{R \, dQ}{(R^2 + x^2)^{3/2}} \]

\[E_y = \frac{2\lambda}{4\pi \varepsilon_0} \int_0^R \frac{dx}{(R^2 + x^2)^{3/2}} \]

Resolviendo la integral, efectuando una sustitución trigonométrica se llega a,

\[E_y = \frac{\lambda}{2\pi \varepsilon_0 R} \Rightarrow E = \frac{\lambda}{2\pi \varepsilon_0 R} \]
Capítulo 2. Campo Eléctrico

2.7 Se dispara un electrón a 10^6 m/s entre dos placas paralelas cargadas con una densidad de $8.85 \times 10^{-9} \text{ coul/m}^2$, como se muestra en la figura. En donde chocará el electrón al tocar la placa superior.

![Diagrama de un electrón disparado entre dos placas paralelas.]

$y - y_0 = v_{oy} t + \frac{1}{2} a t^2 \quad ; \quad v_{oy} = 0 \quad ; \quad y = 0$

$y_0 = \frac{1}{2} a t^2 \Rightarrow t^2 = \frac{2 y_0}{a} \Rightarrow \frac{2 y_0}{F} = \frac{2 y_0 m}{E e}$

El campo eléctrico en el interior de dos láminas paralelas es: $E = \frac{\sigma}{\varepsilon_0}$

(demostrar)

$E = \frac{\sigma}{\varepsilon_0} = \frac{8.85 \times 10^{-9}}{8.85 \times 10^{-12}} = 1000 \frac{\text{nW}}{\text{coul}}$

$t = \sqrt{\frac{2 y_0 m}{E e}} = \sqrt{\frac{2(0.005)(9.1 \times 10^{-14})}{(10^3)(1.6 \times 10^{-19})}} = 7.5 \times 10^{-3} \text{ s}$

$x = v_0 t = (10^{-3})(7.5 \times 10^{-3}) = 7.5 \times 10^{-6} \text{ m} = 0.75 \text{ cm}$

2.8 Tres cargas iguales Q están en los vértices de un triángulo equilátero de lado a, como se muestra en la figura. Calcule el campo eléctrico en el centro del triángulo.

64
Capítulo 2. Campo Eléctrico

\[\vec{E} = E_x \hat{i} + E_y \hat{j} \]

\[E_x = E_{1x} - E_{2x} \]

\[E_{1x} = E_1 \cos \theta = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \cos \theta \]

\[E_{2x} = E_2 \cos \theta = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \cos \theta \]

\[E_z = 0 \]

\[E_y = E_{1y} + E_{2y} - E_3 \]

\[E_y = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \sin \theta + \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \sin \theta - \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \]

\[\text{sen} \theta = \text{sen}(30) = 0.5 \]

\[E_y = \frac{2}{4\pi \varepsilon_0} \frac{Q}{r^2} (0.5) - \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} = 0 \]

\[\vec{E} = 0 \]
2.9 Determine el campo eléctrico en el punto P, debido a una varilla de longitud L y que tiene una densidad lineal de carga constante λ.

$$dE = \frac{1}{4\pi\varepsilon_0} \frac{dQ}{(\frac{1}{2} - x + r)^2} \hat{i}$$

$$dE = \frac{1}{4\pi\varepsilon_0} \frac{\lambda}{(\frac{1}{2} - x + r)^2} \hat{i}$$

$$E = \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{\lambda}{4\pi\varepsilon_0} \frac{dx}{(\frac{1}{2} - x + r)^2} \hat{i} = \frac{2\lambda}{4\pi\varepsilon_0} \int_{0}^{\frac{1}{2}} \frac{dx}{(\frac{1}{2} + r - x)^2}$$

Haciendo, $R = \frac{1}{u} + r$

$$I = \int \frac{dx}{(R - x)^2} \quad \therefore \quad u = R - x$$

$$I = - \int \frac{du}{u^2} = - \int u^{-2} du = u^{-1} = \frac{1}{u}$$

$$I = \left| \frac{1}{u} \right|^{\frac{1}{2}}_{0} = \frac{1}{R - \frac{1}{2}} - \frac{1}{R} = \frac{1}{\frac{1}{2} + r - \frac{1}{2}} - \frac{1}{\frac{1}{2} + r} = \frac{\frac{1}{2} + r - r}{(\frac{1}{2} + r)(\frac{1}{2} + r)}$$

$$I = \frac{L}{2r(\frac{1}{2} + r)}$$

$$E = \frac{2\lambda}{4\pi\varepsilon_0} \left[\frac{L}{2r(\frac{1}{2} + r)} \right] \hat{i} = \frac{\lambda}{4\pi\varepsilon_0} \left[\left(\frac{L}{(\frac{1}{2} + r)} \right) \right] \hat{i}$$
Capítulo 2. Campo Eléctrico

2.10 Determinar la intensidad del campo eléctrico en un punto P situado a una distancia \(z \) de una lámina infinita que tiene una densidad superficial de carga constante \(\sigma \).

\[
\vec{E} = \frac{\lambda}{4\pi \varepsilon_0} \left(\frac{1}{r^2} \right) \hat{r}
\]

\[\vec{E} = \frac{1}{4\pi \varepsilon_0} \int \frac{dQ}{R^2} \hat{r}_R \]

\[R = z\hat{k} - \vec{r} \quad \vec{r} = x\hat{i} + y\hat{j}\]

\[R = z\hat{k} - x\hat{i} - y\hat{j}\]

\[R^2 = x^2 + y^2 + z^2\]

\[\hat{r}_R = \frac{\vec{R}}{R} = \frac{z\hat{k} - x\hat{i} - y\hat{j}}{\sqrt{x^2 + y^2 + z^2}}\]

\[
\vec{E} = \frac{1}{4\pi \varepsilon_0} \int \frac{\sigma dA}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \frac{z\hat{k} - x\hat{i} - y\hat{j}}{\sqrt{x^2 + y^2 + z^2}}
\]

\[
\vec{E} = \frac{\sigma}{4\pi \varepsilon_0} \int \left(\frac{z\hat{k} - x\hat{i} - y\hat{j}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \right) dA
\]

\[
d\vec{E} = \frac{\sigma}{4\pi \varepsilon_0} \int \left(\frac{z\hat{k}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \right) dx dy - \frac{\sigma}{4\pi \varepsilon_0} \int \left(\frac{x\hat{i}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \right) dx dy
\]

\[
d\vec{E} = \frac{\sigma}{4\pi \varepsilon_0} \int \left(\frac{y\hat{j}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \right) dx dy
\]
Capítulo 2. Campo Eléctrico

\[E_x = -\frac{\sigma}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{x\hat{i}}{\left(x^2 + y^2 + z^2 \right)^{3/2}} \right) \, dx \, dy = 0 \quad \text{(Por simetría)} \]

\[E_y = -\frac{\sigma}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{y\hat{j}}{\left(x^2 + y^2 + z^2 \right)^{3/2}} \right) \, dx \, dy = 0 \quad \text{(Por simetría)} \]

\[\vec{E} = \frac{\sigma z \hat{k}}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{dy}{\left(x^2 + y^2 + z^2 \right)^{3/2}} \right) \]

\[\vec{E} = \frac{\sigma z \hat{k}}{4\pi\varepsilon_0} \int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{dy}{\left(x^2 + y^2 + z^2 \right)^{3/2}} \right) \]

\[\vec{E} = \frac{\sigma z \hat{k}}{\pi \varepsilon_0} \int_{0}^{\infty} \frac{dx}{x^2 + z^2} = \frac{\sigma z \hat{k}}{\pi \varepsilon_0} \left(\frac{1}{2} \int_{0}^{\pi} \right) \]

\[\vec{E} = \frac{\sigma z \hat{k}}{2\varepsilon_0} \]
1.- Se tiene un sistema de cuatro cargas puntuales colocadas en el espacio:

- $Q_1 = 1 \times 10^{-6}$ coul $P_1(1,2,3)$ m
- $Q_2 = -3.5 \times 10^{-6}$ coul $P_2(-2,-3,4)$ m
- $Q_3 = 2 \times 10^{-6}$ coul $P_3(0,-2,4)$ m
- $Q_4 = -1.5 \times 10^{-6}$ coul $P_4(-1,0,2)$ m

Hallar la intensidad del campo eléctrico total en el punto $P(2,2,2)$ m.

Respuesta: $E = 2206.7 \mathbf{i} - 485.4 \mathbf{j} - 3279.4 \mathbf{k}$ coul

2.- Un recipiente hemisférico no conductor, de radio interior R tiene una carga total Q distribuida uniformemente en su superficie interior. Encontrar la intensidad del campo eléctrico en el centro de curvatura.

Respuesta: $E = \frac{Q}{8\pi\varepsilon_0 R^2}$

3.- Una varilla delgada no conductora se dobla en forma de arco de círculo de radio R y subtiende un ángulo θ_0 en el centro del círculo. A lo largo de toda su longitud se distribuye una carga total Q. Encontrar la intensidad del campo eléctrico en el centro del círculo en función de R, Q y θ_0.

Respuesta: $E = \frac{Q}{2\pi\varepsilon_0 R^2 \theta_0 \sin \left(\frac{\theta_0}{2} \right)}$

4.- Una varilla de longitud L tiene una densidad lineal de carga constante λ. Encuentre la intensidad del campo eléctrico en el punto P como se muestra en la figura.
Capítulo 2. Campo Eléctrico

Respuesta:

\[E = \frac{\lambda}{4\pi\varepsilon_0 R} \left(\sin \theta_1 - \sin \theta_2 \right) + \frac{\lambda}{4\pi\varepsilon_0 R} \left(\cos \theta_2 + \cos \theta_1 \right) \]

5. Una carga de 16×10^{-9} coul está fija en el origen de coordenadas; una segunda carga de valor desconocido se encuentra en $x = 3$ m, $y = 0$, y una tercera carga de 12×10^{-9} coul está en $x = 6$ m, $y = 0$. Cuál es el valor de la carga desconocida si la intensidad del campo eléctrico resultante en $x = 8$ m, $y = 0$, es 20.25 nw/coul, dirigido hacia la derecha.

Respuesta: $Q = -25 \times 10^{-9}$ coul

6. Cuál es la intensidad del campo eléctrico resultante creado en el punto P por tres cargas colocadas en los vértices como se muestra en la figura. Que fuerza ejercerá sobre una carga de 1×10^{-6} coul colocada en el punto P. Los valores de las cargas son las siguientes:

- $Q_1 = 2 \times 10^{-6}$ coul
- $Q_2 = -4 \times 10^{-6}$ coul
- $Q_3 = 2 \times 10^{-6}$ coul

Respuesta:

- $E = 74.02 \times 10^6$ nw/coul
- $F = 74.02$ nw
7- Una lámina cuadrada en el plano $z = 3 \text{ m}$ definida por $-2 \leq x \leq 2 \text{ m}, -2 \leq y \leq 2 \text{ m}$ con una densidad superficial de carga $\sigma = 2(x^2 + y^2 + 9) \times 10^{-9} \text{ coul/m}^2$. Determine la intensidad del campo eléctrico en el origen.

Respuesta: $E = 864 \text{ k coul}$

8- Un disco de radio R_0 lleva una carga por unidad de área σ y tiene un orificio de radio R cortado en su centro. Hallar la intensidad del campo eléctrico en un punto sobre el eje del disco y a una distancia r de su centro.

Respuesta: $E = \frac{\sigma r}{2\varepsilon_0 \left(\frac{1}{(R^2 + r^2)^{\frac{3}{2}}} - \frac{1}{(R^2 + r^2)^{\frac{1}{2}}} \right)}$

9- Una varilla delgada forma parte de una circunferencia de radio R. El centro de la circunferencia y el origen de las coordenadas XY coinciden. Midiendo θ en el sentido contrario al movimiento de las manecillas del reloj, a partir del eje $+X$, la varilla se encuentra desde $\theta = 0$ hasta $\theta = \pi$. Su densidad lineal de carga es $\lambda = Acos\theta$, donde A es una constante. Halle la intensidad del campo eléctrico en el centro de la circunferencia.

Respuesta: $E = \frac{A}{8\varepsilon_0 R}$

10- Un anillo de radio R tiene una carga Q_1 distribuida uniformemente en media circunferencia y una carga Q_2 distribuida uniformemente en la otra mitad. Donde $Q_1 = Q_2 = Q$. Hallar:

a) La componente horizontal de E_x en un punto x del eje del anillo.

b) La componente vertical E_y en un punto x del eje del anillo.

Respuesta:

a) $E_x = \frac{Q x}{4\pi \varepsilon_0 \left(R^2 + x^2 \right)^{\frac{3}{2}}}$

b) $E_y = \frac{1}{4\pi \varepsilon_0 \left(R^2 + x^2 \right)^{\frac{1}{2}}} \frac{(Q_2 - Q_1)R}{x}$
Capítulo 3
Ley de Gauss

CARL FRIEDRICH GAUSS
1777 - 1855 Alemania
3.1 Introducción

En el capítulo anterior se mostró cómo calcular campos eléctricos de
 distribuciones de carga dada, a partir de la Ley de Coulomb.

En este capítulo se describe un procedimiento alternativo para calcular
campos eléctricos siempre y cuando haya una alta simetría en la distribución
de carga conocido como Ley de Gauss. Este enfoque se basa en el hecho
de que la fuerza electrostática entre cargas puntuales es una ley del recíproco
del cuadrado de la distancia entre ellas. Además, la ley de Gauss sirve como
guía para comprender y resolver problemas más complicados.

3.2 Flujo eléctrico

El flujo eléctrico es proporcional al número de líneas de fuerza que
atraviesan una superficie cualquiera.

Para definir cuantitativamente el flujo eléctrico \(\Phi \), consideremos una
superficie colocada dentro de un campo eléctrico externo, como se muestra
en la figura 3.1.

Fig 3.1 Líneas de fuerza del campo eléctrico que atraviesan
una superficie cualquiera.
Capítulo 3. Ley de Gauss

El elemento de área puede representarse como un vector $d\mathbf{S}$, cuya magnitud es el área dS y su dirección es normal a la superficie y saliendo de ella.

Teniendo en cuenta la segunda condición de líneas de fuerza,

$$ E_L = \frac{dn}{dS} $$

donde,

n : Número de líneas de fuerza

E_L : Componente de \mathbf{E} normal a la superficie

por definición de flujo eléctrico,

$$ dn = d\Phi $$

entonces,

$$ E_L = \frac{d\Phi}{dS} $$

$$ d\Phi = E_L dS $$

pero,

$$ E_L = E \cos \theta $$

$$ d\Phi = E \cos \theta dS $$

El flujo eléctrico total que atraviesa la superficie es:

$$ \Phi = \int_{S} \mathbf{E} \cdot d\mathbf{S} $$

(3.1)
3.3 Ley de Gauss

La ley de Gauss se aplica a cualquier superficie hipotética cerrada (superficie gaussiana). Establece una relación entre el flujo eléctrico para la superficie y la carga neta encerrada por dicha superficie.

Consideremos una superficie gaussiana con una carga neta \(Q_n \) encerrada en la superficie como se muestra en la figura 3.2.

El elemento de flujo eléctrico que atraviesa un elemento de área es,

\[
\text{d}\Phi = E \text{d}S \cos \theta
\]

\[
\text{d}S_\theta = \text{d}S \cos \theta
\]

Fig 3.2 Carga neta encerrada por una superficie gaussiana.

donde,

\(\text{d}S_\theta \) Proyección de \(\text{d}S \) perpendicular a la dirección de \(r \).

\[
\text{d}\Phi = E \text{d}S_\theta
\]

pero,

\[
E = \frac{1}{4\pi \varepsilon_0} \frac{Q_n}{r^2}
\]
Capítulo 3. Ley de Gauss

\[
d\omega = \frac{dS}{r^2} \quad \omega \text{ ángulo sólido}
\]

\[
d\Phi = \frac{1}{4\pi \varepsilon_0} \frac{Q_n}{r^2} d\omega
\]

\[
d\Phi = \frac{Q_n}{4\pi \varepsilon_0} d\omega
\]

\[
\Phi = \int_0^{4\pi} \frac{Q_n}{4\pi \varepsilon_0} d\omega
\]

\[
\Phi = \frac{Q_n}{4\pi \varepsilon_0}
\]

O sea,

\[
\varepsilon_0 \int_S \mathbf{E} \cdot d\mathbf{S} = Q_n \tag{3.2}
\]

3.4 Distribución de cargas en un conductor aislado

Toda carga en exceso que se coloque en un conductor aislado se distribuye totalmente en su superficie exterior.

La explicación al fenómeno anterior es la siguiente: Cuando se coloca una carga en exceso se producen campos eléctricos dentro del conductor; estos campos actúan sobre los portadores de carga del conductor y los hace mover, o sea que se producen corrientes eléctricas internas. Estas corrientes redistribuyen el exceso de carga, de tal manera que los campos eléctricos se anulan dentro del conductor, las corrientes se suspenden y se establecen condiciones electrostáticas.
Capítulo 3. Ley de Gauss

Debido a que las cargas, o mejor, el exceso de carga es de un mismo signo, se repelen entre sí de tal forma que tratan de estar lo más alejadas posible unas de otras, esto lo consiguen cuando están en la superficie del conductor.

Si se aplica la ley de Gauss dentro del conductor (Fig. 3.3) se demuestra que la carga en exceso no se encuentra dentro de él, por lo tanto, dicha carga debe encontrarse en la superficie misma del conductor.
3.1 Calcule el campo eléctrico a una distancia r de una carga puntual Q aislada.

Aplicando la Ley de Gauss:

\[\varepsilon_0 \int_S \mathbf{E} \cdot d\mathbf{S} = Q \]

\[\varepsilon_0 \int_S E \cdot d\mathbf{S} \cos \theta = Q \]

\[\varepsilon_0 \int_S d\mathbf{S} = Q \]

\[\varepsilon_0 E S = Q \quad \therefore \quad S = 4\pi r^2 \quad \land \quad Q = Q \]

\[E = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \]

3.2 Encuentre el campo eléctrico en un punto fuera de una esfera de radio a que tiene una carga total Q distribuida uniformemente.

Aplicando la Ley de Gauss:

\[\varepsilon_0 \int_S \mathbf{E} \cdot d\mathbf{S} = Q \]

\[\varepsilon_0 \int_S E \cdot d\mathbf{S} \cos \theta = Q \]

\[\varepsilon_0 \int_S d\mathbf{S} = Q \]

\[\varepsilon_0 E S = Q \quad \therefore \quad S = 4\pi r^2 \quad \land \quad Q = Q \]
Capítulo 3. Ley de Gauss

\[\varepsilon_0 E \frac{4\pi r^2}{Q} = \]

\[E = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \]

Lo cual es equivalente a que toda la carga estuviera concentrada en el centro de la esfera.

3.3 Encuentre el campo eléctrico producido por la esfera del problema anterior, en puntos dentro de ella \((r < a)\).

La superficie gaussiana es una esfera de radio \(r\).

Como la densidad volumétrica de carga es constante, se tiene que,

\[\rho = \rho_n \]

\(\rho_n\) es la densidad volumétrica de carga de la esfera de radio \(r\).

\[\frac{Q}{V} = \frac{Q_n}{V'} \]

\[\frac{Q}{\frac{4}{3}\pi a^3} = \frac{Q_n}{\frac{4}{3}\pi r^3} \]

\[Q_n = \frac{Q}{a^3} r^3 \]

\[\varepsilon_0 \int_S E \cdot dS = Q_n \]

\[\varepsilon_0 \int_S E \cdot dS \cos 0 = Q_n \]

\[\varepsilon_0 \int_S dS = Q_n \]

\[\varepsilon_0 E S = Q_n \implies S = 4\pi r^2 \land Q_n = Q \]
3.4 Halle el campo eléctrico producido por una carga distribuida uniformemente sobre una lámina no conductora infinita.

Las líneas de fuerza son perpendiculares al plano de la lámina.

La superficie gaussiana es un cilindro que atraviesa la lámina. Aplicando la ley de Gauss:

\[\varepsilon_0 E 4\pi r^2 = \frac{Q}{\alpha^2} r^3 \]

\[E = \frac{1}{4\pi \varepsilon_0} \frac{Qr}{\alpha^2} \]

\[\varepsilon_0 \int_E \vec{E} \cdot d\vec{S} = Q_n \]

\[ES + ES = \frac{Q_n}{\varepsilon_0} \therefore Q_n = Q \]

\[2ES = \frac{Q}{\varepsilon_0} \]

\[E = \frac{Q}{2\varepsilon_0 S} \therefore \sigma = \frac{Q}{S} \]
El flujo eléctrico a través de la superficie lateral del cilindro es cero, porque las líneas de fuerza no atraviesan la superficie lateral del cilindro.

3.5 Calcule el campo eléctrico producido por dos láminas paralelas con cargas iguales y opuestas.

El campo eléctrico resultante en la región por fuera de las láminas es cero, porque el sentido de los campos es opuesto y tienen la misma magnitud.

En el interior de las láminas el campo eléctrico es la suma de los dos campos de las dos láminas.

\[E = 2 \left(\frac{\sigma}{2\varepsilon_0} \right) = \frac{\sigma}{\varepsilon_0} \]

3.6 Encuentre el campo eléctrico generado por una distribución cilíndrica de carga de radio \(a \) en puntos fuera del cilindro.

Como la simetría del campo eléctrico es radial, solo habrá flujo a través de la superficie lateral del cilindro.

Aplicando la ley de Gauss:

\[\varepsilon_0 \int_{S} E \cdot dS = Q_s \]

\[ES = \frac{Q_n}{\varepsilon_0} \quad \therefore \quad Q_n = Q \quad \wedge \quad S = 2\pi L \]

\[E = \frac{Q}{2\pi L} \]
El cual es equivalente al de un filamento muy largo que mantiene una densidad lineal de carga λ constante.

3.7 Para el cilindro del problema anterior, encuentre el campo eléctrico en puntos dentro del cilindro.

Si la carga se distribuye uniformemente dentro del volumen del cilindro, ρ es constante.

$$\rho = \rho_s$$

$$\frac{Q}{\pi a^2 L} = \frac{Q_n}{\pi r^2 L} \Rightarrow Q_n = \frac{Q}{a^2 r^2}$$

donde Q_n es la carga encerrada en el volumen gaussiano, en $r < a$.

Aplicando la ley de Gauss:

$$\varepsilon_0 \oint_S \vec{E} \cdot d\vec{S} = Q_n$$

$$E S = \frac{Q_n}{\varepsilon_0} \quad \therefore \quad Q_n = \frac{Q}{a^2 r^2} \quad \wedge \quad S = 2\pi r L$$

$$E \frac{2\pi r L}{\varepsilon_0} = \frac{Q}{\varepsilon_0 a^2 r^2}$$

$$E = \frac{Q r}{\varepsilon_0 2\pi a^2 L} \quad \therefore \quad \lambda = \frac{Q}{L}$$

$$E = \frac{\lambda r}{2\pi \varepsilon_0 a^2}$$
3.8 Un filamento recto cargado uniformemente de 7 m de largo tiene una carga total positiva de 2 μcoul. Un cilindro de cartón descargado de 2 cm de longitud y 10 cm de radio rodea el filamento en su centro, con el filamento como eje del cilindro. Encuentre a) el campo eléctrico en la superficie del cilindro, y b) el flujo total a través de éste.

a) Si \(Q_n \) es la carga encerrada por el cilindro y \(\lambda \) es constante,

\[
\lambda = \frac{Q}{L_t} = \frac{Q_n}{L} \quad \therefore \quad L_t = \text{Longitud total del filamento}
\]

\[
Q_n = \frac{2 \times 10^{-6}}{7} (0.02) = 5.71 \times 10^{-9} \text{ coul}
\]

Aplicando la ley de Gauss:

\[
\varepsilon_0 \int S \vec{E} \cdot d\vec{S} = Q_n
\]

\[
E \cdot S = \frac{Q_n}{\varepsilon_0} \quad \therefore \quad S = 2\pi r L
\]

\[
E 2\pi r L = \frac{Q_n}{\varepsilon_0}
\]

\[
E = \frac{Q_n}{\varepsilon_0 2\pi r L}
\]

\[
E = \frac{5.71 \times 10^{-9}}{(2\pi)(8.85 \times 10^{-12})(0.1)(0.02)} = 5.13 \times 10^4 \text{ nw/coul}
\]
Capítulo 3. Ley de Gauss

b) \(\Phi = \frac{Q_n}{\varepsilon_0} \)

\[\Phi = \frac{5.71 \times 10^{-9}}{8.85 \times 10^{-12}} = 645.2 \frac{nw.m^2}{coul} \]

3.9 Considere un delgado cascarón esférico de 14 cm de radio con una carga total de 32 μcoul distribuida uniformemente sobre su superficie. Encuentre el campo eléctrico en a) 10 cm y b) 20 cm del centro de la distribución de carga.

a) Aplicando la ley de gauss:

\[\varepsilon_0 \int_S \vec{E} \cdot d\vec{S} = Q_n \]

Como la superficie gaussiana no encierra ninguna carga, entonces \(Q_n = 0 \)

Por lo tanto \(E = 0 \)

b) Aplicando la ley de gauss

\[\varepsilon_0 \int_S \vec{E} \cdot d\vec{S} = Q_n \]

\[\varepsilon_0 \int_S \vec{E} \cdot d\vec{S} \cos 0 = Q_n \]

\[\varepsilon_0 \int_S \vec{E} d\vec{S} = Q_n \]

\[\varepsilon_0 E S = Q_n \quad \therefore \quad S = 4\pi r^2 \quad \wedge \quad Q_s = Q \]

\[\varepsilon_0 E 4\pi r^2 = Q \]

\[E = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \]
3.10 Encuentre el flujo eléctrico y la carga total dentro del cubo de lado a como se muestra en la figura, si está colocado en una región donde el campo eléctrico es $E = c \mathbf{x}$.

El flujo total será la suma de los flujos en dada una de las caras. Por la dirección del campo eléctrico, solamente existe flujo en las caras abcd y ABCD.

$$\Phi = \Phi_{abcd} + \Phi_{ABCD}$$

El flujo eléctrico a través de la cara abcd es cero, pues $E = 0$ porque $x = 0$.

$$\Phi_{abcd} = \int_{ABCD} E \cdot dS = ES = (ca)(a^2) = ca^3$$

$$\Phi = ca^3$$

$$\Phi = \frac{Q}{\varepsilon_0} \Rightarrow Q = \varepsilon_0 \Phi$$

$$Q = \varepsilon_0 \, ca^3$$
Capítulo 3. Ley de Gauss

Problemas Propuestos

1- Se tiene un cubo de lado \(a = 10 \) cm; En la región hay un campo eléctrico cuyas componentes son:
\(E_y = bx^1/2 \), \(E_z = E = 0 \), siendo \(b = 800 \) nw/coul.m^2. Hallar:

a) El flujo eléctrico que pasa por el cubo

b) La carga dentro del cubo

Respuesta: a) \(\Phi = 1.05 \) nw.m^2/coul

b) \(Q = 9.3 \times 10^{-12} \) coul

2- Una pequeña esfera de masa \(1 \times 10^{-3} \) gm tiene una carga \(Q \) de \(2 \times 10^{-8} \) coul. Se encuentra suspendida de un hilo de seda que forma un ángulo de 30° con una gran lámina conductora cargada como se muestra en la figura. Hallar la densidad superficial de carga \(\sigma \) de la lámina.

Respuesta: \(\sigma = 2.5 \times 10^{-9} \) coul/m^2

3- Un cilindro infinitamente largo de radio \(R \) tiene una densidad volumétrica de carga \(\rho \) uniforme. Hallar el campo eléctrico para:

a) En un punto dentro del cilindro o sea \(r < R \)

b) En un punto exterior al cilindro o sea \(r > R \)
Capítulo 3. Ley de Gauss

Respuesta:

a) \(E = \frac{\rho}{2\varepsilon_0} \)

b) \(E = \frac{\rho R^2}{2\varepsilon_0} \langle 1 \rangle \langle r \rangle \)

4- Demuestre la ley de Coulomb a partir de la ley de Gauss.

5- Se tiene un campo eléctrico \(\vec{E} = 2xy\hat{i} + 3yz\hat{j} + 4xz\hat{k} \) nw/coul, cuánto flujo eléctrico pasa a través de la porción de plano \(x = 3 \) m, limitado por \(-1 < y < 2 \) y \(0 < z < 4 \) (m).

Respuesta: \(\Phi = 0 \) nw.m²/coul

6- La región esférica \(0 < r < 3 \) (m) tiene una densidad volumétrica de carga de \(\rho = 2 \) coul/m³, mientras que \(\rho = -1 \) coul/m³ para \(5 < r < 6 \) (m). Si \(\rho = 0 \) en todos los demás puntos, aplique la ley de Gauss para determinar el campo eléctrico en:

a) \(r < 3 \) m
b) \(3 < r < 5 \) m
c) \(5 < r < 6 \) m
d) \(r > 6 \) m

Respuesta:

a) \(E = \frac{2r}{3\varepsilon_0} \)
b) \(E = \frac{18}{r^2 \varepsilon_0} \)
c) \(E = \left(\frac{179}{3r^2} - \frac{r}{3} \right) \frac{1}{\varepsilon_0} \)
d) \(E = \left(\frac{37}{3r^2} \right) \frac{1}{\varepsilon_0} \)
Capítulo 3. Ley de Gauss

7.- Un cilindro muy largo de longitud L y radio R tiene una densidad volumétrica de carga $\rho = \rho_0 \left(\frac{1}{2} - \frac{r^2}{R^2}\right)$, en donde ρ_0 es una constante positiva y r es la distancia radial.

a) Halle el campo eléctrico para un punto dentro del cilindro o sea $r < R$.

b) Determine la carga total dentro de la superficie gaussiana.

Respuesta:

\[
\begin{align*}
\text{a) } & E = \frac{\rho_0 r \left(R^2 - r^2\right)}{4\varepsilon_0 R^2} \\
\text{b) } & Q(r) = \frac{\pi L \rho_0 r}{2R^2} \left(R^2 - 2r^2\right)
\end{align*}
\]

8.- Un campo eléctrico uniforme externo atraviesa perpendicularmente una lámina infinita no conductora con una densidad superficial de carga de $3.1 \, \mu\text{coul/m}^2$, el campo eléctrico que atraviesa una cara es de $4.65 \times 10^5 \, \text{nw/coul}$, ¿cuál es el campo eléctrico que atraviesa la otra cara?

Respuesta: $E = 1.15 \times 10^5 \, \text{nw/coul}$.

9.- Si $\vec{E} = 4xz \hat{i} - y^2 \hat{j} + yz \hat{k}$ (nw/coul). Hallar el flujo eléctrico en el cubo limitado por: $x = 0, x = 1; y = 0, y = 1; z = 0, z = 1 \, (m)$.

Respuesta: $\Phi = \frac{3}{2} \, \text{nw.m}^2/\text{coul}$.

10.- Una lámina conductora delgada infinita de carga positiva, tiene una densidad de carga superficial σ distribuida uniformemente. Halle el campo eléctrico a una distancia r de la lámina.

Respuesta: $E = \frac{\sigma}{\varepsilon_0}$.
Capítulo 4

Potencial Electrostático

ALESSANDRO VOLTA
1745 - 1827 Italia
4.1 Introducción

Los capítulos inmediatamente anteriores permitieron familiarizarse con la ley de Coulomb y su aplicación para encontrar el campo eléctrico alrededor de varias distribuciones simples de carga, y también con la ley de Gauss y su aplicación para determinar el campo alrededor de algunas distribuciones simétricas de carga. El uso de la ley de Gauss hizo invariablemente más fácil la solución de problemas con distribuciones de carga altamente simétricas, porque siempre se evitó el problema de la integración, cuando se escogió la superficie cerrada adecuada.

Sin embargo, existen muchos problemas en los cuales no existe una alta simetría de carga, por lo que es difícil encontrar una superficie gaussiana adecuada y obtener una respuesta; debido a esto la ley de Coulomb es más poderosa, lo que permite resolver problemas en los que no es aplicable la ley de Gauss. La aplicación de la ley de Coulomb es laboriosa y bastante compleja debido a que se debe encontrar el campo eléctrico, que es un campo vectorial, directamente a partir de la distribución de carga. En general, se necesitan tres integraciones diferentes, una para cada componente, y la resolución del vector en componentes, se suma a la complejidad de las integrales.

Debido a que el campo eléctrico es conservativo, existe una función escalar asociado a este campo en la que por medio de un procedimiento directo como la derivación es posible hallar de una forma sencilla el campo eléctrico; esta función escalar se le denomina Potencial Electrostático.

4.2 Diferencia de potencial electrostático

La diferencia de potencial electrostático entre dos puntos a y b en un campo eléctrico se define como el trabajo que debe hacer un agente externo para mover una carga de prueba Q_0 desde el punto a hasta el punto b conservándola siempre en equilibrio.
Capítulo 4. Potencial Electrostático

\[V_b - V_a = \frac{W}{Q_o} \quad (4.1) \]

Si el trabajo es positivo, entonces: \(V_b > V_a \).
Si el trabajo es negativo, entonces: \(V_b < V_a \).
Si el trabajo es cero, entonces: \(V_b = V_a \).

4.3 Sistemas de unidades

a) SISTEMA CGS

- \(W \): Ergio
- \(Q_o \): Stat coulomb (stc)
- \(V \): Ergio/stc = Stat Voltio

b) SISTEMA MKS

- \(W \): Joule
- \(Q_o \): Coul
- \(V \): Joule/coul = Voltio

Para hallar el potencial electrostático en un punto \(b \), generalmente se toma el punto \(a \) en el infinito en donde el potencial allí se le da el valor arbitrario de cero (Potencial Electrostático de referencia).

\[V_b - V_a = \frac{W}{Q_o} \]

Pero,

- \(V_a = 0 \) (en el infinito)
- \(V = V_b \)

entonces,
La anterior ecuación indica que el potencial electrostático en un punto, es el trabajo que debe hacer un agente externo para mover la carga de prueba Q_0 desde el infinito hasta dicho punto.

El potencial electrostático en un punto cercano a una carga positiva aislada es positivo; ya que, un agente externo debe hacer trabajo positivo para llevar la carga de prueba Q_0 desde el infinito hasta dicho punto.

![Figura 4.1](image1.png)

Fig. 4.1 El trabajo es positivo para mover una carga Q_0 desde el infinito hasta un punto cercano a una carga positiva.

El potencial electrostático en un punto cercano a una carga aislada negativa es negativo; ya que, un agente externo debe hacer trabajo negativo para llevar la carga de prueba Q_0 desde el infinito hasta dicho punto.

![Figura 4.2](image2.png)

Fig. 4.2 El trabajo es negativo para mover una carga Q_0 desde el infinito hasta un punto cercano a una carga negativa.
Capítulo 4. Potencial Electrostático

Puede demostrarse que el trabajo como la diferencia de potencial electrostático entre dos puntos es independiente de la trayectoria que se siga al mover la carga de prueba \(Q_0 \) entre estos dos puntos.

4.4 Superficie equipotencial

Es el lugar geométrico de los puntos que están a un mismo potencial electrostático.

No se requiere trabajo para mover una carga de prueba \(Q_0 \) entre dos puntos que se encuentren en una misma superficie equipotencial.

\[V_b - V_a = \frac{W}{Q_0} \]

pero,

\[V_b = V_a \Rightarrow W = 0 \]

Lo anterior es válido debido a que la diferencia de potencial electrostático es independiente de la trayectoria, aun cuando la trayectoria que une los puntos a y b no se encuentre totalmente en la superficie equipotencial.

Consideremos un conjunto de superficies equipotenciales, como se muestra en la figura 4.3.

El trabajo necesario para mover una carga siguiendo las trayectorias I y II es cero, porque éstas trayectorias comienzan y terminan en la misma superficie equipotencial.

Fig 4.3 Conjunto de superficies equipotenciales.
El trabajo necesario para mover una carga siguiendo las trayectorias I y II es diferente de cero pero es el mismo para ambas trayectorias porque los puntos donde se inician las trayectorias están en una misma superficie equipotencial, y los puntos donde terminan esas trayectorias se encuentran en una misma superficie equipotencial.

Una condición importante que deben cumplir las superficies equipotenciales, es que deben ser perpendiculares en todo punto a las línneas de fuerza y por consiguiente al campo eléctrico.

4.5 Relación entre el potencial electrostático y el campo eléctrico

Consideremos que en una región del espacio hay un campo eléctrico uniforme. Se trata de relacionar el potencial electrostático que es una magnitud escalar con la intensidad del campo eléctrico que es una magnitud vectorial para los dos siguientes casos:

a) Campo Eléctrico Constante y Uniforme

Supongamos que en una región existe un campo eléctrico E constante y uniforme. Se quiere determinar la diferencia de potencial entre los puntos a y b.

Fig 4.4 Campo eléctrico constante y uniforme
Capítulo 4. Potencial Electrostático

\[V_b - V_a = \frac{W}{Q_0} \]

\[W = F d \cos \theta \]

\[\theta = 0 \]

\[F = F_c = E Q_0 \]

\[W = E Q_0 d \]

\[V_b - V_a = E d \quad (4.3) \]

b) Campo Eléctrico No Uniforme

Supongamos ahora que en una región del espacio existe un campo eléctrico no uniforme. Veamos como es la diferencia de potencial entre dos puntos colocados dentro del campo.

\[V_b - V_a = \frac{W}{Q_0} \]

\[W = \int_a^b F \cdot d\vec{r} \]

\[W = \int_a^b F \cdot d\vec{r} \cdot \cos \alpha \]

\[W = \int_a^b E Q_0 \cdot d\vec{r} \cdot \cos(180 - \theta) \]

\[W = -Q_0 \int_a^b E \cdot d\vec{r} \cdot \cos \theta \]

Fig 4.5 Campo eléctrico no uniforme
4.6 Potencial electrostático debido a una carga puntual

En una región del espacio existe una carga puntual Q (Fig 4.6), esta carga produce a su alrededor un campo eléctrico. La diferencia de potencial entre dos puntos a y b dentro del campo producido por la carga eléctrica puntual, se determina de la siguiente manera:

$$V_b - V_a = -\int_a^b \mathbf{E} \cdot d\mathbf{r}$$

$$V_b - V_a = -\frac{Q_o}{\varepsilon} \int_a^b \mathbf{E} \cdot d\mathbf{r}$$

$$V_b - V_a = -\frac{Q_o}{\varepsilon} \int_a^b \mathbf{E} \cdot d\mathbf{r}$$

(4.4)
Capítulo 4. Potencial Electrostático

Fig 4.6 Potencial electrostático en un punto cercano a una carga puntual.

\[E = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \]

\[V_b - V_a = \int_{r_a}^{r_b} \frac{1}{4\pi \varepsilon_0} \frac{Q}{r'^2} \, dr' \]

\[L = r + r' \]

\[dr = -dr' \]

\[V_b - V_a = -\frac{Q}{4\pi \varepsilon_0} \int_{r_a}^{r_b} \frac{dr}{r'^2} \]

\[V_b - V_a = -\frac{Q}{4\pi \varepsilon_0} \left[\frac{1}{r_a} - \frac{1}{r_b} \right] \]

\[V_b - V_a = \frac{Q}{4\pi \varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b} \right) \]

\[r_a \to \infty \Rightarrow V_a = 0 \quad \Rightarrow \quad V_a = V \quad \Rightarrow \quad r_a = r \]

por lo tanto,
Si la carga es negativa el potencial electrostático tendrá signo negativo.

La expresión (4.5) indica el trabajo que se debe hacer para mover una carga de prueba Q_0 trayéndola desde el infinito (distancia en la cual no hay interacción entre la carga Q y Q_0) hasta llevarla a una distancia r de la carga Q.

4.7 Potencial electrostático debido a un grupo de cargas puntuales

Se tiene un grupo de cargas puntuales como se muestra en la figura 4.7, para hallar el potencial electrostático total en el punto P se hace lo siguiente:

$$V = V_1 + V_2 + V_3 + \cdots + V_i + \cdots + V_n$$

$$V = \sum_{i=1}^{n} V_i$$

$$V_i = \frac{1}{4\pi\varepsilon_0} \frac{Q_i}{r_i}$$

Fig 4.7 Potencial electrostático en un punto P debido a un sistema de cargas puntuales

entonces,

$$V = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \frac{Q_i}{r_i}$$
Capítulo 4. Potencial Electrostático

4.8 Potencial electrostático debido a una distribución continua de carga

Supongamos un cuerpo macroscópico que tiene una distribución continua de carga Q como se muestra en la figura 4.8.

![Figura 4.8: Potencial electrostático en un punto P debido a un cuerpo macroscópico que tiene una distribución continua de carga.](image)

Se toma un diferencial de carga dQ, que va a producir en el punto P un diferencial de potencial dV. Para hallar el potencial electrostático total se procede a efectuar una integración.

\[
\frac{dV}{r} = \frac{1}{4 \pi \varepsilon_0} \frac{dQ}{r} \quad \Rightarrow \quad V = \frac{1}{4 \pi \varepsilon_0} \int \frac{dQ}{r}
\]

(4.7)

4.9 Potencial electrostático en una esfera conductor

Se quiere determinar el potencial electrostático en un punto dentro de una esfera conductora con respecto al infinito, es decir, un punto muy lejano de la esfera en donde allí el potencial se toma como igual a cero (potencial electrostático de referencia).
Teniendo en cuenta que el punto a se encuentra en el infinito, el punto b dentro de la esfera y el punto c en la superficie de ésta (Fig 4.9). Utilizando la expresión (4.4) se tiene que,

\[V_b - V_a = - \int_a^b \vec{E}.d\vec{r}' \]

\[V_b - V_a = - \int_a^c \vec{E}_1.d\vec{r}' - \int_c^b \vec{E}_2.d\vec{r}' \]

\[V_b - V_a = - \int_a^c \vec{E}_1.d\vec{r} \cos(180) - \int_c^b \vec{E}_2.d\vec{r} \cos(180) \]

Fig 4.9 Potencial electrostático en un punto interior a la esfera conductora de radio R.

\[V_b - V_a = \int_a^c \vec{E}_1.d\vec{r}' + \int_c^b \vec{E}_2.d\vec{r}' \]

\[E_1 = \frac{1}{4 \pi \varepsilon_0} \frac{Q}{r^2} \]

\[E_2 = 0 \quad \text{(En el interior de una esfera conductora)} \]
Capítulo 4. Potencial Electrostático

\[V_b - V_a = \int_{r_c}^{r} \frac{Q}{4 \pi \varepsilon_0 r^2} \, dr' \]

\[L = r + r' \]

\[dr = -dr' \]

\[V_b - V_a = -\frac{Q}{4 \pi \varepsilon_0} \int_{r_c}^{r} \frac{1}{r'^2} \, dr' \]

\[V_b - V_a = -\frac{Q}{4 \pi \varepsilon_0} \left(\frac{1}{r} - \frac{1}{r_c} \right) \]

\[r_c \to \infty \implies V_a = 0 \quad ; \quad V_b = V \quad ; \quad r_c = R \]

\[V = \frac{1}{4 \pi \varepsilon_0} \frac{Q}{R} \quad (4.8) \]

De la anterior ecuación, se concluye que, no importando si la esfera es hueca o maciza y que dentro de ella o en la superficie, el potencial electrostático es constante, su valor viene dado por la ecuación (4.8).

4.10 Potencial electrostático debido a un dipolo eléctrico

Consideremos un dipolo eléctrico el cual produce un potencial electrostático en el punto P como se muestra en la figura 4.10.
Capítulo 4. Potencial Electrostático

Fig 4.10 Potencial electrostático en un punto P debido a un dipolo eléctrico.

\[V = V_+ + V_- \]

\[V_+ = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r_1} \]

\[V_- = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r_2} \]

\[V = \frac{1}{4\pi \varepsilon_0} \frac{1}{r_1} - \frac{1}{4\pi \varepsilon_0} \frac{1}{r_2} \]

\[V = \frac{Q}{4\pi \varepsilon_0} \left(\frac{r_2 - r_1}{r_1 r_2} \right) \] (4.9)

Supongamos que, \(r >> 2a \)

\[r_2 - r_1 = 2a \cos \alpha \]

\(\alpha \approx \theta \)

\[r_2 - r_1 \approx 2a \cos \alpha \]

\[r_2 \approx r_1 \]

\[V = \frac{Q}{4\pi \varepsilon_0} \left(\frac{2a \cos \theta}{r^2} \right) \]
Capítulo 4. Potencial Electrostático

\[p = 2aQ \quad \text{(Momento de dipolo eléctrico)} \]

\[V = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{r^2} \quad (4.10) \]

4.11 Trabajo a través de una trayectoria cerrada

El trabajo para transportar una carga de prueba alrededor de una trayectoria cerrada en un campo electrostático es cero puesto que la trayectoria comienza y termina en el mismo punto. Entonces, los límites superior e inferior de la integral de la ecuación (4.4) se vuelven uno solo y \(V_a = V_b \), por lo tanto el resultado es cero. Una propiedad del Campo Electrostático es, entonces, que la integral de línea de este campo en una trayectoria cerrada es cero; esto es,

\[\int \mathbf{E} \cdot d\mathbf{r} = 0 \quad (4.11) \]

Un campo para el que se cumple la ecuación (4.11) se denomina Campo Conservativo. Se concluye que la diferencia de potencial entre dos puntos cualesquiera de un campo conservativo es independiente de la trayectoria.

4.12 Energía potencial electrostática

Consideremos dos cargas puntuales \(Q_1 \) y \(Q_2 \) separadas una distancia \(r \), como se muestra en la figura 4.11. Si se aumenta la distancia de separación entre ellas, un agente externo debe hacer trabajo positivo si las cargas son de signo opuesto y negativo si las cargas son de igual signo. El trabajo realizado en este caso, queda almacenado en el sistema compuesto por las dos cargas como energía potencial electrostática.

Fig 4.11 Energía potencial electrostática entre dos cargas puntuales separadas una distancia \(r \).
Capítulo 4. Potencial Electrostático

Por lo tanto, se define la energía potencial electrostática de un sistema de cargas puntuales como el trabajo que hay que hacer para formar ese sistema de cargas trayéndolas desde una distancia infinita.

Supongamos que Q_2 se coloca en el infinito y queda en reposo. Entonces, el potencial electrostático en el sitio original de Q_2, causado por Q_1, es,

$$ V = \frac{1}{4\pi\varepsilon_0} \frac{Q_1}{r} $$

Si Q_2 se trae desde el infinito hasta la distancia original r,

$$ V = \frac{W}{Q_2} $$

$$ W = Q_1 V $$

El trabajo realizado queda almacenado como energía potencial electrostática U, en el sistema compuesto por las dos cargas,

$$ U = W y \quad V = \frac{1}{4\pi\varepsilon_0} \frac{Q_1}{r_{12}} $$

Por lo tanto, la energía potencial almacenada en el sistema es,

$$ U = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r_{12}} \quad (4.12) $$

Siendo, r_{12} la distancia entre las cargas.

Para sistemas que contienen más de dos cargas, el procedimiento es calcular la energía potencial para cada par de cargas separadamente y sumar los resultados algebraicamente.

4.13 Gradiente potencial

Consideremos un conjunto de superficies equipotenciales como se muestra en la figura 4.12.
Capítulo 4. Potencial Electrostático

\[V + dV - V = \frac{dW}{Q_0} \]

\[dW = Q_0 \, dV \]

\[dW = \mathbf{F} \cdot d\mathbf{r} = F \, drcos\theta \]

\[F = EQ_0 \]

\[EQ_0 \, drcos\theta = Q_0 \, dV \]

\[\frac{dV}{dr} = Ecos\theta \]

\[E_r = Ecos\theta \]

\(\) \hspace{1cm} \text{Fig 4.12 Desplazamiento de una carga a través de un conjunto de superficies equipotenciales.}

\(E_r \) : Es la componente del campo eléctrico en la dirección -dr.

\(-E_r \) : Es la componente del campo eléctrico en la dirección dr.

Entonces, \(E_r = -\frac{dV}{dr} \)

La anterior ecuación nos dice, que si se avanza por un campo eléctrico a lo largo de una línea recta y si se mide la rapidez con que varía el potencial electrostático con respecto al espacio recorrido con el signo cambiado, se obtiene la componente del campo eléctrico en esa dirección.

Ahora, si se avanza a una dirección perpendicular a las superficies equipotenciales se obtiene la máxima variación del potencial electrostático con respecto al desplazamiento; de esta forma se tiene que:

\(\theta = 0 \)

\(E_r = E \)

Entonces,

\[\mathbf{E} = -\frac{\partial V}{\partial r} \]

(4.13)
A la ecuación (4.13) se le llama Gradiente de Potencial.
Si el potencial electrostático está en función de las tres variables (x,y,z),

\[
\mathbf{E} = - \left(\frac{\partial \mathbf{V}}{\partial x} \right) _i + \left(\frac{\partial \mathbf{V}}{\partial y} \right) _j + \left(\frac{\partial \mathbf{V}}{\partial z} \right) _k
\]

Pero el gradiente se define como,

\[
\nabla \mathbf{V} = \left[\frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k} \right]
\]

Por lo tanto,

\[
\mathbf{E} = - \nabla \mathbf{V}
\]

4.14 Ecuación de Laplace

Si en una región del espacio hay un campo eléctrico; aplicando la ley de Gauss a la superficie de un paralelepípedo (Fig 4.13),

\[
\varepsilon_0 \Phi = Q_a
\]

\[
\varepsilon_0 (\Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 + \Phi_5 + \Phi_6) = Q_a
\]
Capítulo 4. Potencial Electrostático

\[\int E_x(x) dS + \int E_y(x) dS + \int E_z(x) dS + \int E_x(x + dx) dS + \int E_y(y) dS + \int E_z(z) dS = \frac{Q_s}{\varepsilon_0} \]

dS_1 = dy dz
dS_2 = dy dz
dS_3 = dx dz
dS_4 = dx dz
dS_5 = dxdy
dS_6 = dxdy

\[-E_x(x) \int dy dz + E_y(x + dx) \int dy dz + E_z(z) \int dx dz + E_z(z + dz) \int dx dy + E_y(y + dy) \int dx dz - E_y(y) \int dx dz - E_z(z) \int dx dy + E_x(x + dx) \int dx dy = \frac{Q_s}{\varepsilon_0} \]

\[E_x(x + dx) - E_x(x) \int dy dz + [E_y(y + dy) - E_y(y)] \int dx dz + [E_z(z + dz) - E_z(z)] \int dx dy = \frac{Q_s}{\varepsilon_0} \]

\[\frac{\partial E_x}{\partial x} \int dy dz + \frac{\partial E_y}{\partial y} \int dx dz + \frac{\partial E_z}{\partial z} \int dx dy = \frac{Q_s}{\varepsilon_0} \]

\[\left(\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} \right) dx dy dz = \frac{Q_s}{\varepsilon_0} \]

\[\int dv = \frac{Q_s}{\varepsilon_0} \]

\[\nabla \cdot \vec{E} = \frac{Q_s}{\varepsilon_0} \]

\[\nabla \times \vec{E} = \frac{\rho}{\varepsilon_0} \]
se obtiene la Divergencia del Campo Eléctrico,
\[\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \quad (4.16) \]

pero,
\[E_x = -\frac{\partial V}{\partial x} \]
\[E_y = -\frac{\partial V}{\partial y} \]
\[E_z = -\frac{\partial V}{\partial z} \]

reemplazando la ecuación (4.15) en la (4.16), queda la siguiente expresión llamada Ecuación de Poisson,
\[\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho}{\varepsilon_0} \quad (4.17) \]
\[\nabla^2 V = -\frac{\rho}{\varepsilon_0} \quad (4.18) \]
Si \(\rho = 0 \) se obtiene la Ecuación de Laplace.
\[\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0 \quad (4.19) \]
\[\nabla^2 V = 0 \quad (4.20) \]

4.15 Distribución de carga en un conductor aislado

Se tienen dos esferas con diferente carga y diferente radio como se muestra en la figura 4.14.
Capítulo 4. Potencial Electrostático

Las esferas tienen un potencial electrostático,

\[V_1 = \frac{1}{4 \pi \varepsilon_0} \frac{Q'_1}{R_1} \]

\[V_2 = \frac{1}{4 \pi \varepsilon_0} \frac{Q'_2}{R_2} \]

Si se unen las dos esferas mediante un hilo conductor, se produce un movimiento de carga de una esfera a otra debido a la diferencia de potencial electrostático que existía entre ellas hasta un momento en que los potenciales se igualan, cesando así el movimiento de cargas y estableciéndose condiciones electrostáticas; con esta nueva situación se tiene que,

\[V_1 = V_2 \]

\[\frac{1}{4 \pi \varepsilon_0} \frac{Q_1}{R_1} = \frac{1}{4 \pi \varepsilon_0} \frac{Q_2}{R_2} \]

\[\frac{Q_1}{R_1} = \frac{Q_2}{R_2} \]

La densidad superficial de cada esfera,
Capítulo 4. Potencial Electroestático

\[\sigma_1 = \frac{Q_1}{A_1} \]
\[\sigma_2 = \frac{Q_2}{A_2} \]
\[\frac{\sigma_1}{\sigma_2} = \frac{Q_1}{Q_2} \cdot \frac{A_2}{A_1} \]
\[\frac{\sigma_1}{\sigma_2} = \frac{Q_1}{Q_2} \cdot \frac{4\pi R_2^2}{4\pi R_1^2} \]
\[\frac{\sigma_1 R_1^2}{\sigma_2 R_2^2} = \frac{Q_1}{Q_2} \]

pero,
\[\frac{Q_1}{Q_2} = \frac{R_1}{R_2} \]
\[\frac{\sigma_1 R_1}{\sigma_2 R_2} = 1 \]

entonces,
\[\frac{\sigma_1}{\sigma_2} = \frac{R_2}{R_1} \quad (4.21) \]

Según la ecuación (4.21), la densidad de carga tiende a ser mayor en superficies conductoras cuyos radios de curvatura son pequeños y menor en aquellas superficies conductoras cuyos radios de curvatura son grandes.

La figura 4.15 muestra cómo es la concentración de carga en un conductor con diferente radio de curvatura.
Fig 4.15 Distribución de carga en un conductor aislado con diferentes radios de curvatura
4.1 Cuatro cargas puntuales se encuentran en las esquinas de un cuadrado de 30 cm de lado. El valor de las cargas es de 2×10^{-6} coul. Halle el potencial en el centro del cuadrado. Repetir el problema si dos de las cargas son negativas.

a) La distancia de cada carga al centro del cuadrado es

$$ r = \frac{\sqrt{a^2 + a^2}}{2} = \frac{\sqrt{2}}{2} a = 0.212 \text{ m} $$

el potencial que genera una carga Q en el centro:

$$ V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r} = \frac{1}{4\pi\varepsilon_0} \frac{2 \times 10^{-6}}{0.212} = 84905.7 \text{ voltios} $$

El potencial total es $4V = 4 \times 84905.7 = 339622.6 \text{ voltios}$

b) Si dos de las cargas son negativas, el potencial total es $2V - 2V = 0$.

4.2 La partícula de la figura está en reposo entre dos placas cargadas. La separación de las placas es de 10 cm, la masa de la partícula es de 5×10^{-6} kg y su carga es de 2×10^{-9} coul. Encuentre la diferencia de potencial entre las placas.

Las fuerzas que actúan sobre la partícula son las que se muestra en la figura.
Capítulo 4. Potencial Electrostático

Como el sistema está en equilibrio:

\[\sum \vec{F} = 0 \]

\[F_e = W \]

\[QE = mg \Rightarrow E = \frac{mg}{Q} = \frac{5 \times 10^{-6} \times 9.8}{2 \times 10^{-5}} = 24500 \text{Nm} \text{coul} \]

\[V = Ed \]

\[V = (24500)(0.1) = 2450 \text{ Voltios} \]

4.3 Un electrón parte del reposo y se acelera a través de una diferencia de potencial de 100 voltios. Calcule su velocidad final.

\[V = \frac{W}{Q} \]

\[W = QV \]

\[W = \frac{1}{2}mv^2 - \frac{1}{2}mv_e^2 \Rightarrow v_e = 0 \]

\[\frac{1}{2}mv^2 = QV \Rightarrow v = \sqrt{\frac{2QV}{m}} \]

\[v = \sqrt{\frac{(2)(1.6 \times 10^{-19})(100)}{9.1 \times 10^{-3}}} = 5.93 \times 10^6 \text{ m/s} \]

4.4 En una región del espacio, el potencial electrostático, es: \[V = 5x - 3x^2y + 2yz^2 \] Voltios. Calcule el campo eléctrico en esa región. Cuál es la magnitud del campo eléctrico en el punto P (1,0,-2) m.

\[\vec{E} = -\nabla V \]
Capítulo 4. Potencial Electrostático

\[E_x = -\frac{\partial V}{\partial x} = -(5 - 6xy) \]

\[E_y = -\frac{\partial V}{\partial y} = -(-3x^2 + 2z^2) \]

\[E_z = -\frac{\partial V}{\partial z} = -4yz \]

\[\vec{E} = (-5 + 6xy)\hat{i} + (3x^2 - 2z^2)\hat{j} - 4yz\hat{k} \]

En el punto P \((1,0,-2)\) m

\[\vec{E} = (-5 + 6(1)(0))\hat{i} + (3(1)^2 - 2(-2)^2)\hat{j} - 4(0)(-2)\hat{k} \]

\[\vec{E} = -5\hat{i} - 5\hat{j} \frac{nw}{coul} \]

4.5 La varilla de la figura tiene una densidad de carga \(\lambda = \alpha x, \alpha > 0. \) Encuentre el potencial que genera la varilla en el punto \(P. \)

El potencial que genera \(dQ \) en el punto \(P, \) es:

\[dV = \frac{1}{4\pi\epsilon_0} \frac{dQ}{r} \]

\[r = x + d \]
Capítulo 4. Potencial Electrostático

\[dV = \frac{1}{4\pi\epsilon_0} \frac{dQ}{x + d} \]

\[dQ = \lambda \, dx \quad ; \quad \lambda = ax \]

\[dV = \frac{1}{4\pi\epsilon_0} \frac{\alpha x \, dx}{x + d} \]

\[V = \frac{\alpha}{4\pi\epsilon_0} \int_{0}^{L} \frac{x \, dx}{x + d} \]

\[V = \frac{\alpha}{4\pi\epsilon_0} \left\{ L - d \ln\left(\frac{d + L}{d} \right) \right\} \]

4.6 Hallar el potencial en el punto P generado por el filamento finito uniformemente cargado que se muestra en la figura.

El potencial generado por \(dQ \) en el punto P es,

\[V = \frac{1}{4\pi\epsilon_0} \frac{dQ}{r} \]

\[r = \sqrt{x^2 + R^2} \quad , \quad \lambda \frac{dQ}{dx} \Rightarrow dQ = \lambda \, dx \]

\[dV = \frac{1}{4\pi\epsilon_0} \frac{\lambda \, dx}{\sqrt{x^2 + R^2}} \]
Capítulo 4. Potencial Electrostático

\[V = \frac{\lambda}{4\pi \varepsilon_0} \int_0^L \frac{dx}{\sqrt{x^2 + R^2}} \]

\[V = \frac{\lambda}{4\pi \varepsilon_0} \ln \left(\frac{x + \sqrt{x^2 + R^2}}{R} \right) \]

\[V = \frac{\lambda}{4\pi \varepsilon_0} \ln \left(\frac{L + \sqrt{L^2 + R^2}}{R} \right) \]

4.7 Encuentre la energía potencial electrostática del sistema de cargas que se muestra en la figura, si el lado del triángulo equilátero tiene 10 cm y el valor de las cargas es de:

- \(Q_1 = 1 \times 10^{-6} \, \text{coul} \)
- \(Q_2 = 2 \times 10^{-6} \, \text{coul} \)
- \(Q_3 = -4 \times 10^{-6} \, \text{coul} \)

La energía potencial del sistema es la suma de las energías de cada par de partículas.

\[U = U_{12} + U_{13} + U_{23} \]

\[U_{12} = \frac{1}{4\pi \varepsilon_0} \frac{Q_1 Q_2}{r_{12}} \]

\[U_{13} = \frac{1}{4\pi \varepsilon_0} \frac{Q_1 Q_3}{r_{13}} \]

\[U_{23} = \frac{1}{4\pi \varepsilon_0} \frac{Q_2 Q_3}{r_{23}} \]

\[U = \frac{1}{4\pi \varepsilon_0} \left(\frac{Q_1 Q_2}{a} - \frac{Q_1 Q_3}{a} - \frac{Q_2 Q_3}{a} \right) \]
Capítulo 4. Potencial Electrostático

\[U = \frac{1}{4\pi\varepsilon_0} \frac{1 \times 10^{-12}}{0.1} (2 - 4 - 8) = -0.9 \text{ Joules} \]

4.8 Encuentre la diferencia de potencial entre los puntos A y B para una carga de prueba \(Q_0 \) que se mueve siguiendo la trayectoria indicada en la Figura.

Para la trayectoria AC:

\[V_C - V_A = -\int_A^C E \cdot d\mathbf{L} \]

\[V_C - V_A = -\int_A^C E \cos(135) \cdot d\mathbf{L} \]

\[V_C - V_A = \frac{E}{\sqrt{2}} \int_A^C d\mathbf{L} \]

\[AC^2 = d^2 + d^2 \Rightarrow AC = d\sqrt{2} \]

\[V_C - V_A = Ed \]

\[V_B - V_C = -\int_A^C E \cdot d\mathbf{r} = 0 \]

La dirección del desplazamiento de C a B es perpendicular a la dirección del campo eléctrico, además C y B tienen el mismo potencial. Por consiguiente:

\[V_B - V_A = (V_C - V_A) + (V_B - V_C) = Ed + 0 = Ed \]

4.9 Encuentre el potencial electrostático para puntos en el eje de un disco uniformemente cargado con una densidad superficial de carga constante \(\sigma \) y radio R, como se muestra en la figura.

El potencial electrostático que genera el dQ en el punto P es:

\[V = \frac{1}{4\pi\varepsilon_0} \frac{dQ}{r} \]
Capítulo 4. Potencial Electrostático

\[r = \sqrt{x^2 + R^2}, \quad \sigma = \frac{dQ}{dA} \Rightarrow dQ = \sigma dA \]

\[dV = \frac{1}{4\pi \varepsilon_0} \frac{\sigma dA}{\sqrt{x^2 + R^2}} \]

\[dA = 2\pi x dx \]

\[V = \frac{\sigma}{4\pi \varepsilon_0} \int_0^R \frac{2\pi x dx}{\sqrt{x^2 + y^2}} \]

\[V = \frac{\sigma}{2\varepsilon_0} \int_0^R \frac{xdx}{\sqrt{x^2 + y^2}} \]

\[V = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{x^2 + y^2} \right) \]

\[V = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{R^2 + y^2} - y \right) \]

4.10 A partir del potencial generado por un disco cargado uniformemente en puntos sobre el eje del disco, calcule el campo eléctrico que genera el disco en esos mismos puntos.

Se tiene que el potencial generado por el disco es

\[V = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{R^2 + y^2} - y \right) \]

y aplicando el concepto de gradiente de potencial

\[\vec{E} = -\nabla V \]

\[\vec{E} = -\frac{\partial V}{\partial y} = -\left(\frac{\sigma}{2\varepsilon_0} \right) \left(\frac{1}{2} \left(R^2 + y^2 \right)^{\frac{1}{2}} (2y) - 1 \right) \]
Capítulo 4. Potencial Electrostático

\[
\vec{E} = \left(\frac{\sigma y}{2 \varepsilon_0} \right) \left[\frac{1}{\sqrt{R^2 + y^2}} - \frac{1}{y} \right] \hat{j}
\]

\[
\vec{E} = \left(\frac{\sigma y}{2 \varepsilon_0} \right) \left[\frac{1}{y} - \frac{1}{\sqrt{R^2 + y^2}} \right] \hat{j}
\]
1- Una carga Q se distribuye uniformemente en un volumen esférico no conductor de radio R. Hallar el potencial electrostático a una distancia R_0 del centro, donde $R_0 < R$.

Respuesta: $V = \frac{Q(3R^2 - R_0^2)}{8\pi\varepsilon_0 R^3}$

2- Hallar la diferencia de potencial electrostático $V_B - V_A$, siguiendo la trayectoria que se muestra en la figura.

Respuesta: $V_B - V_A = \frac{Q}{4\pi\varepsilon_0} \left(\frac{a - b}{ab} \right)$

3- Una pequeña esfera de 0.2 gm cuelga por medio de una cuerda entre dos placas separadas 5 cm. La carga sobre la esfera es de 6×10^{-9} coul. ¿Cuál es la diferencia de potencial entre las placas si el hilo forma un ángulo de 10° con la vertical?

Respuesta: $V = 2.88 \times 10^3$ voltios

4- Determine la diferencia de potencial $V_b - V_a$, donde el punto a está en el origen y el punto b tiene coordenadas $(4, 2, 0)$ m en una región con campo eléctrico: $\vec{E} = (2x + 8y)\vec{i} + 8x\vec{j}$ nw/coul, siguiendo la trayectoria $x = 8y$.

Repita el problema pero siguiendo la trayectoria sobre el eje X y luego sobre el eje Y.

Respuesta: $V_b - V_a = -80$ voltios
5. Una lámina infinita que contiene una carga por unidad de área \(\sigma \) que depende de la posición, se encuentra en el plano XY y su potencial electrostático está dado por: \(V(x,y,0) = V_0 \cos(kx) \).

Halle la densidad superficial de carga \(\sigma(x,y) \) en la lámina.

Respuesta: \(\sigma = Ke_0 V_0 \sin(kx) \)

6. Un cilindro hueco de radio \(R_b \) tiene una densidad lineal de carga constante \(\lambda \), contiene en su interior un hilo conductor coaxial con una densidad lineal de carga constante \(-\lambda\). Halle la diferencia de potencial entre el cilindro y el conductor.

Respuesta: \(V_i - V_s = \frac{\lambda \ln \frac{R_b}{R_o}}{2\pi e_o} \)

7. En una región del espacio se tiene un potencial electrostático de la forma:

\[
V(x, y, z) = (x - 2)^3 (y + 2)^5 (z - 1)^3
\]

Hallar:

a) El campo eléctrico en el origen

b) Densidad volumétrica de carga en el origen

Respuesta: a) \(\mathbf{E} = -16 \hat{i} + 16 \hat{j} - 48 \hat{k} \)
b) \(\rho = 112 e_o \)

8. Halle el trabajo realizado para mover una carga puntual de \(-20 \times 10^{-6} \) coul desde el origen hasta \(P(4,0,0) \) m, en el campo:

\[
\mathbf{E} = \left(\frac{x}{2} + 2y \right) \hat{i} + 2x \hat{j} \quad [\text{V/m}]
\]

Respuesta: \(W = 80 \times 10^{-6} \) joules
9- Un anillo circular de radio \(R \) contiene una carga cuya densidad lineal de carga \(\lambda \) es constante. Hallar el potencial electrostático en un punto colocado a una distancia \(h \) sobre el eje normal al plano del anillo que pasa por su centro.

Respuesta:

\[
V = \frac{\lambda R}{2\varepsilon_0 \sqrt{h^2 + R^2}}
\]

10- Sobre un sector circular de radio \(R \) y ángulo central \(\theta_0 \), se encuentra distribuida una carga eléctrica \(Q \) con densidad superficial de carga \(\sigma \) constante. Determinar el potencial electrostático en el vértice del sector.

Respuesta:

\[
V = \frac{\sigma \theta_0 R}{4\pi \varepsilon_0}
\]
Capítulo 5

Condensadores y Dieléctricos

GEORG SIMON OHM
1787 - 1854 Alemania
5.1 Introducción

Uno de los usos más antiguos de los conductores en la electrostática fue el almacenamiento de la carga eléctrica. El conductor puede ser cargado, por ejemplo, al proporcionarle un potencial definido por medio de una batería. Para tal aplicación, resulta de interés natural encontrar la Capacidad del conductor para almacenar carga, en un sentido muy similar al de la capacidad de un tanque respecto a la cantidad de agua que puede contener.

5.2 Condensador

Es un dispositivo formado por dos conductores (placas o armaduras) con cargas iguales y opuestas separadas por un dieléctrico (Fig. 5.1).

Un dieléctrico es un material aislante que se opone al movimiento de las cargas eléctricas.

Fig 5.1 Dos conductores con cargas iguales y opuestas separadas por un dieléctrico.
5.3 Capacidad eléctrica o capacitancia

La capacidad eléctrica mide la aptitud que tiene un conductor para almacenar grandes cantidades de carga eléctrica a potenciales electrostáticos relativamente bajos.

La capacidad de un condensador se define como:

\[C = \frac{Q}{V} \]

(5.1)

donde,

- \(Q \): Magnitud de la carga eléctrica de una de las placas.
- \(V \): Diferencia de potencial electrostático entre las placas.

5.4 Sistemas de unidades

a) SISTEMA CGS

- \(Q \): Stat-Coul
- \(V \): Stat-Voltio
- \(C \): Stat-Coul / Stat-Voltio = Stat-Faradio

STAT-FARADIO: Es la capacidad de un condensador que cargado con una carga de un statcoulomb adquiere un potencial electrostático de un statVoltio.

b) SISTEMA MKS

- \(Q \): Coulomb (Coul)
- \(V \): Voltio (V)
- \(C \): Coul/Voltio = Faradio (F)

FARADIO: Es la capacidad de un condensador que cargado con una carga de un coul adquiere un potencial electrostático de un voltio.
Capítulo 5. Condensadores y Dieléctricos

Como el faradio es una unidad de capacidad muy grande, en la práctica se utilizan los submúltiplos del faradio.

1 micro Faradio = 1 μF = 1 x 10^-6 F
1 nano Faradio = 1 nF = 1 x 10^-9 F
1 pico Faradio = 1 pF = 1 x 10^-12 F

La capacidad de un condensador depende de la forma geométrica de las placas, de la distancia de separación entre ellas y del dieléctrico.

Los condensadores se utilizan, entre otras cosas, para producir campos eléctricos constantes, almacenar energía eléctrica en el campo eléctrico entre las placas, reducir fluctuaciones del voltaje, generar oscilaciones electromagnéticas de radio frecuencia, sintonización de frecuencias, etc.

Existen varias clases de condensadores según su forma geométrica: Planos, esféricos y cilíndricos.

5.5 Capacidad de un condensador de placas planas y paralelas

Supongamos el siguiente tipo de condensador cuyas placas son planas y paralelas entre sí.

Aplicando la ley de Gauss a un cilindro en el que una tapa está en una placa y la otra en el espacio entre las placas, como se muestra en la figura 5.2.
Capítulo 5. Condensadores y Dielécticos

\[\varepsilon_0 \int S \varepsilon_0 E \, dS = Q_n \]

\[\varepsilon_0 E S = Q \quad \therefore \quad S = A \quad \text{(Area de las placas)} \]

\[V = E d \]

\[C = \frac{\varepsilon_0 E A}{E d} \]

Se obtiene la siguiente expresión que permite calcular la capacidad de un condensador de placas planas y paralelas.

\[C = \varepsilon_0 \frac{A}{d} \quad (5.2) \]

5.6 Capacidad de un condensador cilíndrico

Un condensador cilíndrico consta básicamente de un cilindro externo de radio \(b \) y un cilindro interno de radio \(a \), que tienen una carga \(Q \) y \(-Q\) respectivamente, como se muestra en la figura 5.3.

Aplicando la ley de Gauss a un cilindro de radio \(r \) en el que \(R_a < r < R_b \),

\[\varepsilon_0 \int S \varepsilon_0 E \, dS = Q_n \]

\[E = \frac{Q}{2 \pi \varepsilon_0 r L} \]

Fig 5.3 Condensador cilíndrico.
Capítulo 5. Condensadores y Dieléctricos

\[V_b - V_a = V = -\int_a^b \mathbf{E} \cdot d\mathbf{r} = \int_a^b \mathbf{E} \cdot d\mathbf{r} \cos \theta \]

\[V = \int_r^{R_b} \frac{Q}{2\pi \varepsilon_0 r L} \, dr = \frac{Q}{2\pi \varepsilon_0 L} \ln \left(\frac{R_b}{R_a} \right) \]

entonces,

\[C = \frac{Q}{V} \]

\[C = \frac{2\pi \varepsilon_0 L}{\ln \left(\frac{R_b}{R_a} \right)} \quad (5.3) \]

5.7 Capacidad de un condensador esférico

Un condensador esférico consta básicamente de una esfera externa y una esfera interna de radios \(R_b \) y \(R_a \) respectivamente, como se muestra en la figura 5.4.

Aplicando la ley de Gauss a una esfera de radio \(r \) en el que \(R_a < r < R_b \):

![Fig 5.4 Condensador esférico](image)
Capítulo 5. Condensadores y Dielécticos

$$\varepsilon_0 \int_S \vec{E} \cdot d\vec{S} = Q_a$$

$$V_b - V_a = V = - \int_a^b \vec{E} \cdot d\vec{r} = - \int_a^b \frac{E \cdot d\vec{r}}{} \cos(180)$$

$$E = \frac{Q}{4\pi \varepsilon_0 \cdot r^2}$$

$$V = \int_a^b \frac{Q}{} \frac{4\pi \varepsilon_0 \cdot r^2 \cdot d\vec{r}}{4\pi \varepsilon_0} = \frac{Q}{4\pi \varepsilon_0} \left(\frac{1}{R_a} - \frac{1}{R_b} \right)$$

entonces,

$$C = \frac{Q}{V}$$

$$C = 4\pi \varepsilon_0 \left(\frac{R_a \cdot R_b}{R_a - R_b} \right)$$ \quad (5.4)

El símbolo eléctrico de un condensador se representa generalmente en cualquiera de las dos formas como se muestra en la figura 5.5.

Fig 5.5 Símbolo eléctrico de un condensador.

5.8 Condensadores en paralelo

Un sistema de condensadores conectados como se muestra en la figura 5.6, se dice que están en paralelo. Las características de esta conexión son las siguientes:
a) La diferencia de potencial electrostático entre placas de cada uno de los condensadores es la misma.

\[V = C_1 V \quad C_2 V \quad C_3 V \]

\[Q_1 = C_1 V \quad Q_2 = C_2 V \quad Q_3 = C_3 V \]

\[Q = C_1 V + C_2 V + C_3 V \]

\[Q = (C_1 + C_2 + C_3) V \]

b) La carga eléctrica acumulada en las placas de cada uno de los condensadores depende de la capacidad de ellos.

El sistema de condensadores en paralelo se puede reemplazar por un solo condensador con una capacidad equivalente \(C_{eq} \).

La carga total del sistema es,

\[Q = Q_1 + Q_2 + Q_3 \]

\[Q = (C_1 + C_2 + C_3) V \]

\[C_{eq} = \frac{Q}{V} \]

entonces,
La ecuación (5.5) indica que la capacidad equivalente es igual a la suma de las capacidades de los condensadores que están en paralelo.

El sistema equivalente queda como se muestra en la figura 5.7.

Generalizando, si hay \(n \) condensadores conectados en paralelo, la capacidad equivalente se calcula de la siguiente manera:

\[
C_{eq} = \sum_{i=1}^{n} C_i
\]

\[(5.6) \]

5.9 Condensadores en serie

Un sistema de condensadores conectados como se muestra en la figura 5.8, se dice que están en serie. Las características de esta conexión son las siguientes:

a) La carga eléctrica acumulada en las placas de cada uno de los condensadores es la misma.

b) La diferencia de potencial electrostático entre las placas de cada uno de los condensadores depende de la capacidad de ellos.

\[V = V_1 + V_2 + V_3 \]
donde,

\[V_1 = \frac{Q}{c_1} \]

\[V_2 = \frac{Q}{c_2} \]

\[V_3 = \frac{Q}{c_3} \]

\[V = \frac{Q}{c_1} + \frac{Q}{c_2} + \frac{Q}{c_3} \]

\[V = Q \left(\frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} \right) \]

entonces,

\[\frac{1}{c_{eq}} = \left(\frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} \right) \] \hspace{1cm} (5.7)

La ecuación (5.7) indica que el inverso de la capacidad equivalente es igual a la suma de los inversos de las capacidades de los condensadores que están en serie.

El sistema equivalente queda como se muestra en la figura 5.9.

Generalizando, si hay n condensadores conectados en serie, la capacidad equivalente se calcula de la siguiente manera:

\[\frac{1}{c_{eq}} = \sum_{i=1}^{n} \frac{1}{c_i} \] \hspace{1cm} (5.8)
5.10 Condensadores con dieléctrico

Michael Faraday construyó dos condensadores idénticos, en uno colocó un dieléctrico y al otro lo dejó con aire.

Luego, estos condensadores se cargaron con la misma diferencia de potencial, como se muestra en la figura 5.10.

Faraday encontró experimentalmente que la carga en el condensador que tenía dieléctrico era mayor que la carga en el otro que tenía aire. O sea,

\[Q > Q_0 \]

por lo tanto,

\[C_0 = \frac{Q_0}{V} \]

\[C = \frac{Q}{V} \]

y como,

\[Q_0 < Q \quad \Rightarrow \quad C_0 < C \]
En conclusión, la capacidad de un condensador con dieléctrico aumenta si se coloca un dieléctrico entre las placas.

Luego se hizo otro experimento; se colocó la misma carga a los dos condensadores y se midió la diferencia de potencial entre placas a cada condensador, como se muestra en la figura 5.11. Se observó que,

\[V < V_0 \]

\[C_0 = \frac{Q}{V_0} \]

\[C = \frac{Q}{V} \]

\[\frac{C}{C_0} = \frac{V_0}{V} \]

como \(V_0 > V \), entonces \(C > C_0 \). Nuevamente aquí se demuestra que la capacidad de un condensador aumenta cuando se le coloca un dieléctrico.

Fig 5.11 Dos condensadores idénticos, con la misma carga y uno de ellos con dieléctrico.
5.10.1 Constante dieléctrica de un material

Es la relación entre la capacidad con dieléctrico y la capacidad sin el dieléctrico.

\[K = \frac{C}{C_0} \] \hspace{1cm} (5.9)

como,

\[\frac{C}{C_0} = \frac{V_0}{V} \]

y teniendo en cuenta la ecuación (5.9),

\[K = \frac{V_0}{V} \] \hspace{1cm} (5.10)

La anterior ecuación indica que, al colocar un dieléctrico a un condensador, la diferencia de potencial disminuye en un factor \(1/K\) con respecto a la diferencia de potencial cuando no tenía dieléctrico.

5.10.2 Constante dieléctrica de algunos materiales

La siguiente tabla muestra los valores de la constante dieléctrica de algunos de los materiales que comúnmente se utilizan en la práctica.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacío</td>
<td>1.0000</td>
</tr>
<tr>
<td>Aire</td>
<td>1.0005</td>
</tr>
<tr>
<td>Baquelita</td>
<td>4 a 10</td>
</tr>
<tr>
<td>Aceite de ricino</td>
<td>4.3 a 4.7</td>
</tr>
<tr>
<td>Acetato de celulosa</td>
<td>7</td>
</tr>
<tr>
<td>Vidrio pirex</td>
<td>4.1 a 4.9</td>
</tr>
</tbody>
</table>
Capítulo 5. Condensadores y Dieléctricos

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mica</td>
<td>6.4 a 6.7</td>
</tr>
<tr>
<td>Aceites aisladores</td>
<td>2.2 a 4.6</td>
</tr>
<tr>
<td>Papel</td>
<td>2 a 2.5</td>
</tr>
<tr>
<td>Parafina</td>
<td>1.9 a 2.2</td>
</tr>
<tr>
<td>Gasolina</td>
<td>2.3</td>
</tr>
<tr>
<td>Glicerina</td>
<td>43</td>
</tr>
<tr>
<td>Ambar</td>
<td>2.7</td>
</tr>
<tr>
<td>Agua</td>
<td>81</td>
</tr>
<tr>
<td>Compuesto de hule</td>
<td>3 a 7</td>
</tr>
</tbody>
</table>

5.10.3 Dieléctrico colocado en un campo eléctrico uniforme externo

Vamos a analizar que le ocurre a un dieléctrico en presencia de un campo eléctrico uniforme externo, (Fig 5.12).

Donde,

E_0: Campo eléctrico externo

E': Campo eléctrico producido por las cargas inducidas en el dieléctrico.
El campo eléctrico resultante dentro del dieléctrico viene dado por:

\[E = E_0 - E' \]

\[V_0 = E_0 d \]

\[V = Ed \]

siendo \(d \) el espesor del dieléctrico.

\[\frac{V_0}{V} = \frac{E_0}{E} \]

\[K = \frac{E_0}{E} \] (5.11)

Si se coloca un dieléctrico dentro de un campo eléctrico, aparecen cargas inducidas en el dieléctrico cuyo efecto es debilitar el campo eléctrico en el dieléctrico.

5.11 Ley de Gauss con dieléctrico

Sabemos que el campo eléctrico entre las placas de un condensador con aire es:

\[E_0 = \frac{Q}{\varepsilon_0 A} \]

Consideremos ahora un condensador en el cual se ha colocado un dieléctrico cuya constante dieléctrica es \(K \), (Fig. 5.13).

Aplicando la ley de Gauss al cilindro de la figura 5.13
Fig 5.13 Condensador con dieléctrico.

\[\varepsilon_0 \oint \mathbf{E} \cdot d\mathbf{S} = Q \]

\[\varepsilon_0 \oint \mathbf{E} \cdot d\mathbf{S} = Q - Q' \]

donde,

- \(Q \): Carga en las placas
- \(Q' \): Carga inducida en el dieléctrico

\[\varepsilon_0 \oint \mathbf{E} \cdot d\mathbf{S} = Q - Q' \]

\[\varepsilon_0 E A = Q - Q' \]

\[E = \frac{Q - Q'}{\varepsilon_0 A} = \frac{Q}{\varepsilon_0 A} - \frac{Q'}{\varepsilon_0 A} \]

pero,

\[K = \frac{F_e}{E} \Rightarrow E = \frac{E_0}{K} \]
La carga inducida en el dieléctrico es,

\[Q' = Q \left(1 - \frac{1}{K} \right) \]
(5.12)

La ecuación (5.12) indica que la carga inducida siempre será de menor magnitud que la carga de las placas.

Por lo tanto, la ley de Gauss con dieléctrico es,

\[\varepsilon \oint \mathbf{E} \cdot d\mathbf{S} = Q - Q' \left(1 - \frac{1}{K} \right) \]

entonces,

\[\varepsilon \oint K \mathbf{E} \cdot d\mathbf{S} = Q' \]
(5.13)

5.12 Polarización eléctrica y desplazamiento eléctrico

Teniendo en cuenta la expresión,

\[\frac{Q}{K \varepsilon_0 A} = \frac{Q}{\varepsilon_0 A} - \frac{Q'}{\varepsilon_0 A} \]
Capítulo 5. Condensadores y Dielécticos

\[\frac{Q}{KA} + \frac{Q'}{A} = \frac{Q}{A} \]

\[\varepsilon_0 \left(\frac{Q}{\varepsilon_0 KA} \right) + \frac{Q'}{A} = \frac{Q}{A} \]

donde,

\[E = \frac{Q}{\varepsilon_0 KA} \]

definiendo,

\[P = \frac{Q'}{A} \quad (5.14) \]

donde \(P \) se le llama Polarización Eléctrica.

O sea que la Polarización eléctrica es la carga inducida por unidad de área.

Definiendo también,

\[D = \frac{Q}{A} \quad (5.15) \]

donde \(D \) se le llama Desplazamiento Eléctrico.

Según lo anterior, el Desplazamiento eléctrico se define como la carga libre por unidad de área.

Por lo tanto,

\[\tilde{D} = \varepsilon_0 \tilde{E} + \tilde{P} \quad (5.16) \]
Capítulo 5. Condensadores y Dieléctricos

sabemos que,

\[P = \frac{Q'}{A} \]

multiplicando y dividiendo por el espesor del dieléctrico d.

\[P = \frac{Q'd}{Ad} \]

pero,

\[p = Q'd \]
\[v = Ad \]

donde,

\[p : \text{Momento del dipolo eléctrico inducido en el dieléctrico.} \]
\[v : \text{Volumen del dieléctrico.} \]

Por lo tanto,

\[\bar{P} = \frac{\bar{p}'}{v} \] \hspace{1cm} (5.17)

La polarización eléctrica se define también como el momento de dipolo eléctrico inducido por unidad de volumen.

Los tres vectores eléctricos \(\bar{E}, \bar{D}, \bar{P} \) se pueden representar gráficamente como se muestra en la figura 5.14.
Capítulo 5. Condensadores y Dieléctricos

Fig 5.14 Los tres vectores eléctricos.

Por otra parte de la expresión (5.15),

\[\mathbf{D} = \frac{Q}{A} \]

\[\mathbf{D} = \varepsilon_0 \left(\frac{Q}{\varepsilon_0 A} \right) = \varepsilon_0 \left(\frac{\sigma}{\varepsilon_0} \right) \]

\[\mathbf{D} = \varepsilon_0 \mathbf{E}_0 \]

desde que

vectorialmente,

\[\mathbf{D} = \varepsilon_0 \mathbf{E}_0 \]

reemplazando en la ley de Gauss con dieléctrico,

\[\int \mathbf{D} \cdot d\mathbf{S} = Q_n \]

(5.19)

donde \(Q_n \) es la carga neta libre.

Cuando aumenta el campo eléctrico dentro de un dieléctrico, también lo hace la distancia de separación entre los centros de carga positiva y negativa dentro de cada átomo o molécula del dieléctrico.
Para cualquier dieléctrico, siempre y cuando los campos eléctricos no sean demasiado intensos, la polarización eléctrica varía linealmente con el campo eléctrico aplicado. En tal caso:

\[\mathbf{P} = \chi \varepsilon_0 \mathbf{E} \]

Donde \(\chi \) es la constante de proporcionalidad llamada **Susceptibilidad Eléctrica** del dieléctrico. Si se cumple la ecuación anterior, se le denomina "comportamiento dieléctrico lineal".

Teniendo en cuenta la expresión,

\[\mathbf{D} = \varepsilon_0 \mathbf{E} = \varepsilon_0 \mathbf{E} + \mathbf{P} \]

pero,

\[\mathbf{P} = \chi \varepsilon_0 \mathbf{E} \]

entonces,

\[\varepsilon_0 \mathbf{E} = \varepsilon_0 \mathbf{E} + \chi \varepsilon_0 \mathbf{E} \]

\[\varepsilon_0 \mathbf{E} = \varepsilon_0 \mathbf{E} (1 + \chi) \]

\[\varepsilon_0 \mathbf{E} = \epsilon_0 \mathbf{E} (1 + \chi) \]

Definiendo la permitividad del dieléctrico como,

\[\epsilon = K \varepsilon_0 \]

(5.21)

Por lo tanto,

\[\epsilon = \varepsilon_0 (1 + \chi) \]

(5.22)

La cantidad definida de esta manera se le conoce como **Permitividad del dieléctrico**, es un número mayor que cero, la permitividad de un dieléctrico será siempre mayor que la permitividad eléctrica en el vacío o aire \(\varepsilon_0 \).
De la ecuación,
\[\varepsilon_s K = \varepsilon_s (1 + \chi) = \varepsilon \]
se obtiene,
\[K = 1 + \chi = \frac{\varepsilon}{\varepsilon_s} \tag{5.23} \]

La anterior ecuación indica otra manera de definir la constante dieléctrica en función de la Susceptibilidad eléctrica del dieléctrico y de la permitividad eléctrica relativa. Puede verse que la Susceptibilidad eléctrica en el vacío o en el aire es cero y la permitividad eléctrica relativa es 1.

5.13 Condiciones de frontera utilizando los tres vectores eléctricos

Los tres vectores eléctricos \(\mathbf{E}, \mathbf{D}, \mathbf{P} \) son importantes en la teoría de los fenómenos dieléctricos.

La ley de Gauss puede estar en términos del campo eléctrico \(\mathbf{E} \), en cuyo caso la carga que aparece en la ecuación es la carga total compuesta por la carga libre y la carga inducida en el dieléctrico; o se puede utilizar la ley de Gauss en términos de \(\mathbf{D} \) en cuyo caso sólo aparece la carga neta libre.

Hay una diferencia importante entre el campo eléctrico \(\mathbf{E} \) y el desplazamiento eléctrico \(\mathbf{D} \). En tanto que \(\mathbf{E} \) representa una suma de campos microscópicos producidos por átomos o moléculas individuales, el desplazamiento eléctrico \(\mathbf{D} \) representa un campo macroscópico que proviene de la polarización de un volumen macroscópico. En otras palabras, se puede considerar el campo eléctrico producido por una o dos moléculas, pero no tendría significado estudiar el vector de desplazamiento eléctrico \(\mathbf{D} \) en el caso de un sistema de pocas moléculas.

Veamos como varían los tres vectores eléctricos en la frontera de dos dieléctricos distintos. Consideremos una pequeña porción de una superficie entre dieléctricos de constantes dieléctricas \(K_1 \) y \(K_2 \), como se muestra en la figura 5.15.
Capítulo 5. Condensadores y Dieléctricos

Como el campo eléctrico es conservativo,

$$\oint_c \mathbf{E} \cdot d\mathbf{r} = 0$$

$$\oint_c \mathbf{E} \cdot d\mathbf{r} = \int_a^b \mathbf{E}_1 \cdot d\mathbf{r} + \int_b^c \mathbf{E}_1 \cdot d\mathbf{r} + \int_c^d \mathbf{E}_2 \cdot d\mathbf{r} + \int_d^e \mathbf{E}_2 \cdot d\mathbf{r} = 0$$

Fig 5.15 Frontera entre dos dieléctricos de constantes K1 y K2.

como las distancias bc y ad son infinitesimales,

$$\int_a^b \mathbf{E}_1 \cdot d\mathbf{r} = \int_d^e \mathbf{E}_2 \cdot d\mathbf{r} = 0$$

entonces,

$$\int_a^b \mathbf{E}_1 \cdot d\mathbf{r} \cos \theta_1 + \int_c^d \mathbf{E}_2 \cdot d\mathbf{r} \cos \theta = 0$$

pero,

$$\theta = \pi - \theta_2$$

$$\int_a^b \mathbf{E}_1 \cdot d\mathbf{r} \cos \theta_1 + \int_c^d \mathbf{E}_2 \cdot d\mathbf{r} \cos (\pi - \theta_2) = 0$$

$$\mathbf{E}_1 \cdot d\mathbf{r} \cos \theta_1 + \mathbf{E}_2 \cdot d\mathbf{r} \cos (\pi - \theta_2) = 0$$
Capítulo 5. Condensadores y Dieléctricos

donde,

\[E_{1p} = E_1 \cos \theta_1 \]
\[E_{2p} = E_2 \cos \theta_2 \]

se llega a,

\[E_{1p} = E_{2p} \quad (5.24) \]

Lo anterior indica que la componente del campo eléctrico paralela a la frontera es continua a través de ella.

Vamos a aplicar la ley de Gauss en términos de desplazamiento eléctrico (Fig. 5.16).

\[
\int \mathbf{D} \cdot d\mathbf{S} = Q_n
\]

Las integrales de superficie de las caras laterales tienden a cero debido a que las superficies de las caras laterales son infinitesimales, por lo tanto,

\[
\int_{S_1} \mathbf{D}_1 \cdot dS \cos (90 + \theta_1) + \int_{S_2} \mathbf{D}_2 \cdot dS \cos (90 - \theta_2) = Q_n
\]

\[-\mathbf{D}_1 \cdot \text{sen} \theta_1 + \mathbf{D}_2 \cdot \text{sen} \theta_2 = Q\]

donde,
Capítulo 5. Condensadores y Dielécticos

\[D_{in} = D_1 \sin \theta_1 \]
\[D_{2n} = D_2 \sin \theta_2 \]

se llega a,

\[D_{2n} - D_{1n} = \sigma \] \hspace{1cm} (5.25)

La ecuación anterior implica una discontinuidad de la componente normal del desplazamiento eléctrico cuando hay carga libre en la frontera.

En ausencia de la carga libre, la componente normal de \(\mathbf{D} \) es continua a través de la frontera aunque existan cargas inducidas.

De la expresión,

\[E_{1p} = E_{2p} \]

se sabe que,

\[P_{1p} = \varepsilon_0 \chi_1 E_{1p} \]
\[P_{2p} = \varepsilon_0 \chi_2 E_{2p} \]

\[\frac{P_{1p}}{\chi_1} = \frac{P_{2p}}{\chi_2} \]

entonces,

\[\frac{P_{1p}}{\chi_1} = \frac{P_{2p}}{\chi_2} \] \hspace{1cm} (5.26)

También tenemos que,

\[D = K \varepsilon_0 E \]

reemplazando en la expresión,

\[E_{1p} = E_{2p} \]
Capítulo 5. Condensadores y Dieléctricos

se llega a,

\[\frac{D_{2n}}{K_1} = \frac{D_{1n}}{K_2} \] \hspace{1cm} (5.27)

y teniendo en cuenta la expresión,

\[D_{2n} - D_{1n} = \sigma \]

se obtiene,

\[K_1 E_{2n} - K_1 E_{1n} = \frac{\sigma}{\varepsilon_o} \] \hspace{1cm} (5.28)

aplicando la ley de Gauss en términos del campo eléctrico a la Fig 5.15.

\[\varepsilon_o \int_S \vec{E} \cdot d\vec{S} = Q_n \]

\[Q_n = Q + Q' \]

se tiene que,

\[E_{2n} - E_{1n} = \frac{1}{\varepsilon_o} (\sigma + \sigma') \]

pero,

\[\sigma = D_{2n} - D_{1n} \]

\[D = \varepsilon_o E + P \]

se llega a,

\[P_{2n} - P_{1n} = -\sigma' \] \hspace{1cm} (5.29)

Las condiciones de frontera son importantes para determinar la manera como funcionan los condensadores con dieléctricos, además son muy importantes en la óptica para comprender el comportamiento de la luz en la frontera entre dos materiales.
5.14 Energía almacenada en un campo eléctrico

Un condensador cargado tiene almacenada en él una energía potencial electrostática U igual al trabajo que se requiere para cargarlo.

\[\mathrm{d}W = V \mathrm{d}Q \]

\[V = \frac{Q}{C} \]

\[\mathrm{d}W = \frac{Q}{C} \mathrm{d}Q \]

\[W = \int_{0}^{Q} \frac{Q}{C} \mathrm{d}Q \]

\[W = \frac{1}{2} \frac{Q^2}{C} \]

Como $W = U$, entonces,

\[U = \frac{1}{2} \frac{Q^2}{C} \] \hspace{1cm} (5.30)

o en función de la diferencia de potencial electrostático,

\[Q = CV \]

entonces,

\[U = \frac{1}{2} CV^2 \] \hspace{1cm} (5.31)

o sea que la energía de un condensador reside en el campo eléctrico.
5.15 Densidad de energía

Es la energía almacenada en la unidad de volumen. Es decir,

\[u = \frac{U}{v} \]

pero,

\[U = \frac{1}{2} CV^2 \]

\[v = Ad \]

\[u = \frac{1}{2} CV^2 \]

\[2 Ad \]

pero,

\[C = K\varepsilon_0 \frac{A}{d} \]

\[E = \frac{V}{d} \]

por lo tanto,

\[u = \frac{1}{2} K\varepsilon_0 E^2 \]

(5.32)

Se concluye que, si existe un campo eléctrico en una región cualquiera en el espacio, podemos considerar a esa región como un lugar en donde hay una energía almacenada por unidad de volumen.
Capítulo 5. Condensadores y Dieléctricos

5.1 Un capacitor de aire tiene entre placas una capacitancia de 8 \(\mu \text{F} \). Cuál será su capacitancia cuando se le coloca entre sus placas un dieléctrico de constante dieléctrica 6.

\[
\frac{C}{C_0} = K
\]

\[
C = K C_0
\]

\[
C = (6)(8 \times 10^{-6}) = 48 \ \mu\text{F}
\]

5.2 Se desea construir un condensador de placas paralelas usando goma como dieléctrico \((K = 3)\). La capacitancia debe ser de 0.15 \(\mu\text{F} \) y debe soportar una diferencia de potencial máxima de 6000 voltios. Cuál debe ser la mínima área de las placas del condensador si el campo eléctrico entre placas es de \(20 \times 10^6 \text{ V/m} \).

Para un condensador con dieléctrico,

\[
C = K \varepsilon_0 \frac{A}{d}
\]

\[
V = Ed \implies d = \frac{V}{E}
\]

\[
d = \frac{6000}{20 \times 10^6} = 3 \times 10^{-4} \text{ m}
\]

\[
A = \frac{Cd}{K \varepsilon_0} = \left(0.15 \times 10^{-6}\right)\left(3 \times 10^{-4}\right) \left(3 \times 8.85 \times 10^{-12}\right) = 1.69 \text{ m}^2
\]

5.3 Tres condensadores de 1.5 \(\mu\text{F} \), 2 \(\mu\text{F} \) y 3 \(\mu\text{F} \) se conectan en paralelo y se les aplica una diferencia de potencial de 20 voltios. Determine la capacitancia equivalente del circuito, la carga en cada condensador y la energía total del circuito.
\[C_{eq} = C_1 + C_2 + C_3 \]
\[C_{eq} = (1.5 + 2 + 3) \mu F = 6.5 \mu F \]
\[Q_1 = C_1 V = (1.5 \times 10^{-6})(20) = 3 \times 10^{-5} \text{ coul} \]
\[Q_2 = C_2 V = (2 \times 10^{-6})(20) = 4 \times 10^{-5} \text{ coul} \]
\[Q_3 = C_3 V = (3 \times 10^{-6})(20) = 6 \times 10^{-5} \text{ coul} \]
\[C_{eq} = \frac{Q_1}{V} \Rightarrow Q_1 = C_{eq} V \]
\[Q_1 = (6.5 \times 10^{-6})(20) = 1.3 \times 10^{-4} \text{ coul} \]

Donde,
\[Q_t = Q_1 + Q_2 + Q_3 \]

La energía total del circuito es,
\[U = \frac{1}{2} \frac{Q^2}{C_{eq}} \]
\[U = \frac{1}{2} \frac{(1.3 \times 10^{-4})^2}{6.5 \times 10^{-6}} = 1.3 \times 10^{-3} \text{ joules} \]

5.4 Repetir los mismos cálculos del problema anterior, si los condensadores están en serie.

\[\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \]
\[\frac{1}{C_{eq}} = \left(\frac{1}{1.5} + \frac{1}{2} + \frac{1}{3} \right) \frac{1}{\mu F} = \frac{9}{6 \mu F} \]
Capítulo 5. Condensadores y Dieléctricos

\[C_{eq} = \frac{6}{9} \mu F = 0.67 \mu F \]

La carga de cada condensador es la misma,

\[C_{eq} = \frac{Q}{V} \]

\[Q = C_{eq} V \]

\[Q = \left(0.67 \times 10^{-6}\right)(20) = 1.34 \times 10^{-5} \text{ coul} \]

\[V_1 = \frac{Q}{C_1} = \frac{1.34 \times 10^{-5}}{1.5 \times 10^{-6}} = 8.93 \text{ V} \]

\[V_2 = \frac{Q}{C_2} = \frac{1.34 \times 10^{-5}}{2 \times 10^{-6}} = 6.7 \text{ V} \]

\[V_3 = \frac{Q}{C_3} = \frac{1.34 \times 10^{-5}}{3 \times 10^{-6}} = 4.47 \text{ V} \]

La energía acumulada en el circuito es,

\[U = \frac{1}{2} \frac{Q^2}{C} \]

\[U = \frac{1}{2} \frac{(1.34 \times 10^{-5})^2}{0.67 \times 10^{-4}} = 1.34 \times 10^{-4} \text{ joules} \]

5.5 Un condensador de placas paralelas tiene una capacitancia de 2 \(\mu F \) en ausencia de un dieléctrico. Una placa de material dieléctrico de constante dieléctrica \(K = 4 \) y espesor \(\frac{1}{4} d \), donde \(d \) es la distancia entre placas, se inserta dentro de las placas. Calcule la nueva capacitancia cuando está presente el dieléctrico si la distancia \(d \) es de 12 mm.
El capacitor es equivalente a dos capacitores conectados en serie, como se muestra en la figura.

\[C_1 = \frac{K \varepsilon_0 A}{d} \]

\[C_2 = \frac{\varepsilon_0 A}{3d} \]

\[\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{d}{4K \varepsilon_0 A} + \frac{3d d + 3Kd}{4 \varepsilon_0 A} \]

\[C_{eq} = \frac{4K \varepsilon_0 A}{d(1 + 3K)} = \left(\frac{4K}{1 + 3K} \right) \left(\frac{\varepsilon_0 A}{d} \right) \]

Para \(K = 4, \)

\[C_{eq} = \frac{16}{13} C_o = \frac{16}{13} (2 \mu F) = 2.46 \mu F \]

5.6 Un capacitor esférico lleno de aire se construye con un cascarón interior de 7 cm y un exterior de 14 cm de radio, respectivamente. Calcule la capacitancia del dispositivo. ¿Qué diferencia de potencial entre los cascarones se produce con una carga de 4 µcoul en el capacitor?
Capítulo 5. Condensadores y Dieléctricos

\[C = 4 \pi e_0 \left(\frac{R_a R_b}{R_b - R_a} \right) \]

\[C = \frac{1}{9 \times 10^3} \left[\frac{(0.07)(0.14)}{0.14 - 0.07} \right] = 1.56 \times 10^{-11} \text{ F} \]

\[C = \frac{Q}{V} \Rightarrow V = \frac{Q}{C} \]

\[V = \frac{4 \times 10^{-6}}{15.6 \times 10^{-12}} = 256.4 \text{ KV} \]

5.7 Cuatro capacitores se conectan como se muestra en la figura. a) Encuentre la capacitancia equivalente entre los puntos a y b. b) Calcule la carga en cada condensador si \(V_{ab} = 15 \text{ V}, C_1 = 15 \mu \text{F}, C_2 = 3 \mu \text{F}, C_3 = 6 \mu \text{F}, C_4 = 20 \mu \text{F} \)

![Diagrama de capacitores](image)

a) \[\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{15 \mu \text{F}} + \frac{1}{3 \mu \text{F}} = \frac{1 + 5}{15 \mu \text{F}} = \frac{6}{15 \mu \text{F}} \]

\[C_{eq} = \frac{15}{6} \mu \text{F} = 2.5 \mu \text{F} \]

\[C_{eq} = C_{eq1} + C_3 = 2.5 \mu \text{F} + 6 \mu \text{F} = 8.5 \mu \text{F} \]

\[\frac{1}{C_{eq}} = \frac{1}{C_{eq1}} + \frac{1}{C_4} + \frac{1}{8.5 \mu \text{F}} + \frac{1}{20 \mu \text{F}} = \frac{20 + 8.5}{170 \mu \text{F}} = \frac{28.5}{170 \mu \text{F}} \]
Capítulo 5. Condensadores y Dieléctricos

\[C_{eq} = \frac{170}{28.5} \mu F = 5.96 \mu F \]

b) \[Q = \frac{C_{eq}}{V} \Rightarrow Q = C_{eq} V \]

\[Q = (5.96 \times 10^{-6})(15) = 89.4 \mu \text{Coul} \]

\[V_{eq} = Q \times \frac{C_{eq}}{20 \times 10^{-6}} = 4.47 \text{ V} \]

\[V_{eq2} = V_{ab} - V_{eq} = 10.53 \text{ V} \]

\[Q_4 = 89.4 \mu \text{Coul} \]

\[Q_{eq} = C_{eq} V_{eq} \]

\[Q_{eq2} = (2.5 \times 10^{-6})(10.53) = 26.3 \mu \text{Coul} \]

\[Q_4 = Q_2 = 26.3 \mu \text{Coul} \]

\[Q_3 = C_3 V_{eq} \]

\[Q_3 = (6 \times 10^{-6})(10.53) = 63.18 \mu \text{Coul} \]

5.8 La permitividad del diamante es \(1.46 \times 10^{-10} \text{ coul}^2/\text{nw.m}^2\). Cuál es la constante dieléctrica del diamante. Cuál es la susceptibilidad eléctrica del diamante.

\[K = \frac{\varepsilon}{\varepsilon_0} \]

\[K = \frac{1.46 \times 10^{-10}}{8.85 \times 10^{-12}} = 16.5 \]

\[K = 1 + \chi \]

\[\chi = K - 1 = 16.5 - 1 = 15.5 \]
5.9 Un condensador de aire tiene una capacidad de 1000 pF. La carga de cada placa es de 1 coul. Si la carga se mantiene constante, calcule la diferencia de potencial entre placas si la separación entre placas se duplica.

\[C_1 = \frac{Q_1}{V_1} \]

\[V_1 = \frac{Q_1}{C_1} = \frac{1}{1 \times 10^{-5}} = 1 \times 10^5 \text{ V} \]

\[V_2 = Ed_2 \]

\[d_2 = 2d_1 \]

\[V_2 = E(2d_1) = 2(Ed_1) = 2V_1 \]

\[V_2 = (2)(1 \times 10^5) = 2 \times 10^5 \text{ V} \]

5.10 Se desea construir un capacitor intercalando una hoja de papel de 0.004 cm de espesor entre hojas de estaño. El papel tiene una constante dieléctrica relativa de 2.8 y conducirá la electricidad si está en un campo eléctrico de 5 x 10^7 V/m (o mayor). Calcule el área de la placa que se necesita para que un capacitor de este tipo tenga una capacitancia de 0.3 \(\mu \)F. Cuál es el potencial máximo que se puede aplicar a las placas.

\[C = \frac{K\varepsilon_0 A}{d} \]

\[A = \frac{Cd}{K\varepsilon_0} \]

\[A = \frac{(0.3 \times 10^{-6})(4 \times 10^{-5})}{(2.8)(8.85 \times 10^{-12})} = 0.484 \text{ m}^2 \]

\[V = Ed \]

\[V = (5 \times 10^7)(4 \times 10^{-5}) = 2000 \text{ V} \]
1- Un condensador tiene placas cuadradas, cada una de lado a, y formando un ángulo θ entre sí, como se muestra en la figura. Hallar la capacidad de este condensador para valores pequeños de θ.

Respuesta:

2- Los condensadores de la figura, están inicialmente descargados con el interruptor S abierto. $C_1 = 6 \, \mu F$, $C_2 = 3 \, \mu F$ y $V = 200 \, V$.

a) Cuál es la diferencia de potencial V_{ab}.

b) Hallar el potencial en el punto b después de cerrado el interruptor S.

b) ¿Cuánta cantidad de carga fluye a través de S cuando se cierra.

Respuesta:

3- Una barra de dieléctrico se coloca entre las placas de un condensador de aire de placas paralelas. El grosor del dieléctrico es exactamente la mitad de la distancia entre las placas. Si la constante dieléctrica es 2 ¿Cuál es la relación de la capacidad con dieléctrico a la capacidad sin dieléctrico?

Respuesta:

$$\frac{C}{C_0} = \frac{4}{3}$$
Capítulo 5. Condensadores y Dieléctricos

4- En la figura se muestra una combinación de condensadores. El voltaje aplicado entre los puntos a y b es de 300 V. $C_1 = 3 \, \mu\text{F}$, $C_2 = 2 \, \mu\text{F}$ y $C_3 = 4 \, \mu\text{F}$. Hallar:

a) La carga y la diferencia de potencial de cada condensador.
b) La energía almacenada en el sistema. Usar dos métodos para éste cálculo.

Respuesta:

a) $Q_1 = 6 \times 10^{-4} \, \text{coul}$, $V_1 = 200 \, \text{V}$

$Q_2 = 2 \times 10^{-4} \, \text{coul}$, $V_2 = 100 \, \text{V}$

$Q_3 = 4 \times 10^{-4} \, \text{coul}$, $V_3 = 100 \, \text{V}$

b) $U = 9 \times 10^2 \, \text{Joules}$

5- En un condensador de placas paralelas y área A se ponen dos dieléctricos llenándolo como se muestra en la figura. Determine la capacidad de este condensador.

Respuesta:

$$C = \varepsilon \frac{A}{d} \left(\frac{K_1 + K_2}{2} \right)$$

6- Un condensador plano de placas paralelas tiene unas placas de 600 cm2 de área y una separación de 4 mm, se carga hasta 100 V y luego se desconecta de la pila.

a) Hallar el campo eléctrico, la densidad de carga σ y la energía U. Luego se
coloca en su interior un dieléctrico de constante $K = 4$ que rellena por completo el espacio entre las placas.

b) Hallar el campo eléctrico E y la diferencia de potencial entre las placas.

c) Hallar la nueva energía almacenada.

d) Hallar la densidad de carga inducida.

Respuesta:

a) $E = 2.5 \times 10^4 \text{ V/m}$
 $\sigma = 2.21 \times 10^{-7} \text{ coul/m}^2$
 $U = 6.64 \times 10^{-7} \text{ joules}$

b) $E = 6.25 \text{ KV/m}$,
 $V = 25 \text{ V}$

c) $U = 1.66 \times 10^{-7} \text{ joules}$

d) $\sigma = 1.66 \times 10^{-7} \text{ coul/m}^2$

7- La región 1 definida por $x < 0$, es espacio vacío, mientras la región 2, $x > 0$, es un material dieléctrico para el cual $\epsilon_2 = 2.4$. El desplazamiento eléctrico en la región 1 es: $D = 3\hat{i} - 4\hat{j} + 6\hat{k} \text{ coul/m}^2$. Hallar el campo eléctrico en la región 2 y los ángulos θ_1 y θ_2.

Respuesta:

b) $E = \frac{1}{\epsilon_0} (1.25\hat{i} - 4\hat{j} + 6\hat{k}) \text{ coul/m}^2$

 $\theta_1 = 22.6^\circ$

 $\theta_2 = 9.83^\circ$

8- Un capacitor de placas paralelas lleno de aire tiene placas de 4 por 4 cm, con separación de 3 mm.

a) Cómo se deben utilizar 2 cm^3 de parafina ($\epsilon_r = 2.25$) para obtener la máxima capacitancia?

b) Cuál es su capacidad máxima?
Capítulo 5. Condensadores y Dieléctricos

Respuesta:
 a) $A = 6.67 \text{ cm}^2$ por 3 mm
 b) $C_{\text{max}} = 7.18 \text{ pF}$

9- ¿Cuál será el radio de una esfera rodeada de un dieléctrico de constante $K = 2$, si su capacitancia es de 2 μF? ¿Qué energía se necesita para cargarla a un potencial de 10 V? ¿Qué energía se obtendrá al descargarla?

Respuesta:
 $R = 9 \times 10^3 \text{ m}$
 $U = -1 \times 10^4 \text{ joules}$
 $U = 1 \times 10^4 \text{ joules}$

10- Una esfera conductora de radio R en el vacío tiene una carga Q. a) Calcule la energía electrostática total almacenada en el espacio circundante. b) Cuál es el radio R_0 de una superficie esférica tal que dentro de ella quede la tercera parte de la energía almacenada.

Respuesta:
 a) $U = \frac{Q^2}{8\pi \varepsilon_0 R}$
 b) $R_0 = \frac{3}{2} R$
Capítulo 6

Corriente Eléctrica y Circuitos de Corriente Continua

GUSTAV R. KIRCHHOFF
1824 - 1887 Alemania
6.1 Introducción

La carga eléctrica en movimiento constituye una corriente eléctrica y cualquier medio portador es un conductor. En los conductores metálicos la corriente eléctrica es transportada por los electrones.

En plasmas o conductores gaseosos la carga es conducida por electrones y por iones positivos. En conductores líquidos (Electrolitos) la corriente es llevada por iones, tanto positivos como negativos. En semiconductores, la corriente es llevada por electrones y huecos, teniendo estos carga positiva.

6.2 Intensidad de la corriente

Es la cantidad de carga eléctrica que atraviesa una sección transversal cualquiera de un conductor en la unidad de tiempo (Fig. 6.1) y se define como,

\[I = \frac{Q}{t} \] (6.1)

Para las corrientes que varían con el tiempo, la intensidad de la corriente se define como,

\[i = \frac{dQ}{dt} \] (6.2)

Fig. 6.1 Carga eléctrica que atraviesa una sección transversal de un conductor.
6.3 Sistemas de unidades

a) Sistema CGS
 Q : Stat Coul
 t : Segundos
 I : Stat Coul/s = Stat Amperio

Un STAT AMPERIO es la intensidad de la corriente que se produce cuando circula una carga de un StatCoul durante un segundo.

b) Sistema MKS
 Q : Coul
 t : Segundo
 I : Coul/s = Amperio = [A]

Un AMPERIO es la intensidad de la corriente que se produce cuando circula una carga de un Coul durante un segundo.

6.4 Sentido de la corriente

Como las cargas de diferente signo se mueven en direcciones opuestas a un campo eléctrico dado, es necesario adoptar una convención para asignar un solo sentido a la corriente. Por convención, se supone que los portadores de carga son positivos y se dibuja el sentido de la corriente por medio de una flecha en el sentido en que se moverían tales cargas, o sea, en el sentido del campo eléctrico dentro del conductor (Fig 6.1).

6.5 Efectos de la corriente eléctrica

a) EFECTO CALORÍFICO: Elevando la temperatura del conductor.

b) EFECTO MAGNÉTICO: Produciendo campos magnéticos alrededor del conductor.

c) EFECTO QUÍMICO: Produciendo reacciones químicas en los ácidos, bases y sales.
6.6 Densidad de corriente

La densidad de corriente expresa la cantidad de flujo de carga en un punto dentro de un conductor (Fig 6.2). La densidad de corriente es una cantidad microscópica y se representa por un vector en la dirección de la corriente en un punto dentro del conductor.

\[\mathbf{J} = \lim_{\Delta A \to 0} \frac{\Delta I}{\Delta A} = \frac{dI}{dA} \quad (6.3) \]

La intensidad de la corriente en función de la densidad de corriente,

\[I = \int \mathbf{J} \cdot d\mathbf{s} \quad (6.4) \]

Si la densidad de corriente es constante en todo el área de la sección transversal del conductor y es paralela a las líneas de corriente, entonces

\[\mathbf{J} = \frac{I}{A} \quad [\text{A/m}^2] \quad (6.5) \]
6.7 Velocidad de arrastre

Es la velocidad media que adquieren los portadores de carga al moverse de un punto a otro del conductor. (Fig. 6.3)

![Fig. 6.3 Cargas eléctricas que se mueven dentro de un conductor.](image)

Donde L es la distancia recorrida por la carga Q en el tiempo t.

Entonces,

$$v_d = \frac{L}{t}$$

$$t = \frac{Q}{I}$$

$$I = JA$$

$$v_d = \frac{JAL}{Q}$$

el volumen del conductor es,

$$V = AL$$

$$v_d = \frac{V}{Q}$$
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

\[\rho = \frac{Q}{v} \] \hspace{1cm} \text{(Densidad volumétrica de carga libre)}

por lo tanto,

\[J = \rho \vec{v}_d \]

en forma vectorial,

\[\vec{J} = \rho \vec{v}_d \] \hspace{1cm} (6.6)

teniendo en cuenta la cuantización de la carga,

\[Q = N Q_0 \]

donde,

N : Número de cargas libres

Q_o : Carga elemental

\[\rho = \frac{Q}{v} \]

\[J = \frac{Q}{v} \]

\[J = \frac{N Q_o}{v} \vec{v}_d \]

\[n = \frac{N}{v} \]

n : Número de cargas libres por unidad de volumen.

Por lo tanto,

\[\vec{J} = n Q_0 \vec{v}_d \] \hspace{1cm} (6.7)
6.8 Fuentes de fuerza electromotriz (FEM)

Existen varios dispositivos como pilas, baterías, generadores eléctricos y acumuladores entre otros en los cuales mantienen una diferencia de potencial entre dos puntos de un conductor. A estos dispositivos se les denomina Fuentes de fuerza electromotriz (FEM).

Una fuente de fuerza electromotriz (FEM) es un dispositivo el cual transforma energía química, mecánica o cualquier otro tipo de energía en energía eléctrica.

El símbolo eléctrico de una fuente de fuerza electromotriz (FEM) es el que se muestra en la figura 6.4,

\[\text{Fuerza electromotriz (FEM)} \]

Fig 6.4 Símbolo eléctrico de una fem DC y AC.

6.9 Fuerza electromotriz

La fuerza electromotriz (FEM) se define como el trabajo que debe hacer la fuente sobre los portadores de carga para moverlos de un punto de bajo potencial a un punto de mayor potencial. En otras palabras, es la diferencia de potencial entre los bornes de la fuente cuando no está suministrando corriente eléctrica.

\[\mathcal{E} = \frac{dW}{dQ} \]

La unidad de la fem es Joule/coul = Voltio.
6.10 Fuentes de FEM conectadas en serie

Consideremos un grupo de fuentes de voltaje ideales (resistencia interna despreciable) conectadas en serie como se muestra en la figura 6.5.

\[\varepsilon = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 \] (6.9)

Si hay n fuentes conectadas en serie, la fem total entre los puntos a y b es:

\[\varepsilon = \sum_{i=1}^{n} \varepsilon_i \] (6.10)

La fem entre los puntos a y b es igual a la suma de las FEM de cada una de las fuentes de voltaje. La ventaja de esta conexión es la de aumentar el voltaje de suministro entre los puntos a y b.

6.11 Fuentes de FEM conectadas en paralelo

Consideremos un grupo de fuentes de voltaje ideales (resistencia interna despreciable) conectadas en paralelo como se muestra en la figura 6.6.
La fem de salida entre los terminales a y b será igual a la fem ε de una de las fuentes. La ventaja de esta conexión es la de aumentar la capacidad de suministrar corriente y por consiguiente aumentar la potencia eléctrica.

6.12 Ley de Ohm

Consideremos un conductor por el cual se mueven los portadores de carga produciendo una corriente eléctrica como se muestra en la figura 6.7.

Fig 6.7 Movimiento de carga eléctrica dentro de un conductor.

\[
F = EQ_o
\]
\[
F = ma
\]
\[
EQ_o = ma
\]
\[
EQ_o = m \frac{dv}{dt}
\]
resolviendo la ecuación diferencial,
\[
v = v_o + \frac{EQ_o}{m}
\]
si,
\[
E = 0 \Rightarrow v = v_o
\]
donde,
\[
v_o: \text{ Velocidad de la carga debido al efecto térmico.}\]
Para hallar la velocidad de arrastre v_d de los portadores de carga se promedia la velocidad v, por esto se tiene que $v_0 = 0$, ya que el movimiento térmico de las cargas dentro del conductor es al azar, por lo tanto,

$$v_d = \frac{EQ_x t}{m}$$

la ecuación anterior nos dice que en el transcurso del tiempo, la velocidad de arrastre de la carga crece linealmente, lo cual es un absurdo. Lo que ocurre realmente es que la velocidad no crece linealmente en forma indefinida, sino que cesará tan pronto como la carga sufra una colisión que altere radicalmente su curso y rapidez; después de esta colisión, las carga tomará una dirección distinta con una velocidad diferente. El efecto de las colisiones es transformar la energía cinética que había adquirido la carga por la velocidad de arrastre en energía térmica.

La figura 6.8, muestra como varía la velocidad de las cargas hasta que llega el momento de la colisión T_c.

![Fig 6.8 Comportamiento gráfico de vd de las cargas que se mueven dentro de un conductor.](image)

La velocidad promedio o de arrastre durante un ciclo viene a ser la mitad del valor máximo o sea,

$$v_d = \frac{EQ_x T_c}{2m}$$

la densidad de corriente puede escribirse ahora como,
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

\[J = \frac{nQ_o T_c}{2m} E \]

definiendo,

\[\sigma = \frac{nQ_o^2 T_c}{2m} \]

la expresión anterior se le conoce como Conductividad eléctrica.

Si el tiempo promedio \(T_c \) entre las colisiones es independiente del campo eléctrico, ésta ecuación indica que la densidad de corriente es proporcional al campo eléctrico, llamándosele la Ley de Ohm. Es decir,

\[\bar{J} = \sigma E \]

6.13 Resistencia eléctrica

Consideremos un conductor de longitud \(L \) y área de sección transversal \(A \) como se muestra en la figura 6.9. Se le aplica una diferencia de potencial \(V \) entre los extremos, por consiguiente circulará una corriente \(I \).

![Fig 6.9](image)

Se le aplica una diferencia de potencial entre los extremos de un conductor.

\[V_b - V_a = - \int E dz \]
\[V_b - V_a = - EL \]

El signo menos indica que es una caída de potencial. Pero de aquí en adelante sólo tendremos en cuenta las magnitudes de la corriente y de la diferencia de potencial, por lo tanto,
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

\[V_b - V_a = E L \]
\[E = \frac{J}{\sigma} \]
\[V_b - V_a = V = \frac{J}{\sigma} L \]
\[J = \frac{1}{A} \]
\[V = \frac{1}{A \sigma} L \]

definiendo,

\[\rho = \frac{1}{\sigma} \]
\[(6.13) \]
donde \(\rho \) se le llama resistividad eléctrica. Por lo tanto,

\[V = \rho \frac{L}{A} I \]

de aquí obtenemos que,

\[R = \rho \frac{L}{A} \]
\[(6.14) \]
donde,

\(R \) : Resistencia eléctrica del conductor

De acuerdo con lo anterior tenemos que,

\[R = \frac{V}{I} \]
\[(6.15) \]
de la ecuación anterior, concluimos que la resistencia eléctrica de un conductor se mide como la relación entre la diferencia de potencial \(V \) entre dos puntos del conductor y la intensidad de la corriente \(I \) que por él circula.
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

La resistencia eléctrica mide la oposición que presenta el conductor al paso de la corriente eléctrica que por él circula. El símbolo eléctrico de la resistencia eléctrica es,

Fig 6.10 Símbolo eléctrico de la resistencia eléctrica de un conductor.

6.14 Sistemas de unidades

a) SISTEMA CGS
 V : Stat Voltio
 I : Stat Amperio
 R : Stat Ohm

 Un STAT OHM es la resistencia de un conductor que al aplicarle una diferencia de potencial de un statVoltio circula una corriente de un stat Amperio.

b) SISTEMA MKS
 V : Voltio
 I : Amperio
 R : Ohm = [Ω]

 Un OHM es la resistencia de un conductor que al aplicarle una diferencia de potencial de un Voltio circula una corriente de un Amperio.

Los múltiplos y submúltiplos del Ohm son,
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

1 Mega Ohm = 1 MΩ = 1 x 10^6 Ω
1 Kilo Ohm = 1 kΩ = 1000 Ω
1 mili Ohm = 1 mΩ = 1 x 10^-3 Ω
1 Micro Ohm = 1 Ω = 1 x 10^-6

refiriéndonos a la expresión,

\[R = \frac{V}{I} \]

se puede decir que un conductor cumple con la ley de Ohm, si la relación entre el voltaje \(V \) aplicado y la corriente \(I \) que por él circula permanece constante. O sea, que si se hace una gráfica de voltaje contra corriente, dicha gráfica es una línea recta cuya pendiente viene a ser la resistencia del conductor (Fig. 6.11). En general, los conductores metálicos cumplen con la ley de Ohm.

Fig 6.11 Si la gráfica de \(V \) contra \(I \) es una línea recta entonces se dice que el conductor cumple con la ley de Ohm.

Las gráficas de corriente contra voltaje para algunos conductores se muestran a continuación.

Fig 6.12 Gráficas típicas de \(I \) contra \(V \) de algunos conductores.
6.15 Efecto de la temperatura sobre la resistencia eléctrica

La resistencia eléctrica en los conductores metálicos aumenta con la temperatura. Entre determinados límites de temperatura, la resistencia de los conductores metálicos es una función lineal de la temperatura como se muestra en la figura 6.13.

\[
\tan \beta = \frac{R_2 - R_1}{T_2 - T_1}
\]

\[
\tan \beta = \frac{\Delta R}{\Delta T}
\]

\[
\frac{\Delta R}{\Delta T} = \frac{R_2 - R_1}{T_2 - T_1}
\]

dividiendo por \(R_1 \),

\[
\frac{\Delta R}{\Delta T R_1} = \frac{R_2 - R_1}{(T_2 - T_1)R_1}
\]

definiendo,
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

\[\alpha = \frac{\Delta R}{\Delta T R_i} \]

\(\alpha \) : Coeficiente de temperatura de la resistencia a la temperatura \(T_i \).

\[\alpha = \frac{R_2 - R_1}{(T_2 - T_1)R_1} \]

despejando \(R_2 \),

\[R_2 = R_1 (1 + \alpha (T_2 - T_1)) \] (6.16)

Si se hace \(T_1 = 0 \) y \(\alpha_0 \) el coeficiente de temperatura a 0°C, se tiene entonces que:

\[R_2 = R_1 (1 + \alpha_0 (T_2)) \] (6.17)

donde,

\(R_0 \): Es la resistencia del conductor a 0 °C.

Por ejemplo, para el cobre \(\alpha_0 = 0.00427 \) °C\(^{-1} \), esto indica que la resistencia del cobre aumenta 0.427 % por cada grado centígrado de aumento de temperatura a partir de 0 °C.

6.16 Resistencias en serie

Una combinación de resistencias como se muestra en la figura 6.14, se dice que están conectadas en serie.

\[V = V_1 + V_2 + V_3 \]

Fig 6.14 Conexión de resistencias en serie
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

Aplicando la ley de Ohm,

\[V_1 = IR_1 \]
\[V_2 = IR_2 \]
\[V_3 = IR_3 \]
\[V = IR_1 + IR_2 + IR_3 \]
\[V = I(R_1 + R_2 + R_3) \]
\[V = R_1 + R_2 + R_3 \]

\[R_{eq} = R_1 + R_2 + R_3 \] \hspace{1cm} (6.18)

donde \(R_{eq} \) es la resistencia equivalente de la combinación.

Si hay \(n \) resistencias conectadas en serie, la resistencia equivalente se calcula de la manera siguiente:

\[R_{eq} = \sum_{i=1}^{n} R_i \] \hspace{1cm} (6.19)

De lo anterior se puede concluir que una combinación de resistencias en serie es equivalente a una sola resistencia cuyo valor debe ser igual a la suma de las resistencias que se encuentren en serie (Fig. 6.15).

Fig. 6.15 Resistencia equivalente.
6.17 Resistencias en paralelo

 Una combinación de resistencias conectadas como se muestra en la figura 6.16, se dice que están conectadas en paralelo.

\[I = I_1 + I_2 + I_3 \]

Aplicando la ley de Ohm,

\[I_1 = \frac{V}{R_1} \]
\[I_2 = \frac{V}{R_2} \]
\[I_3 = \frac{V}{R_3} \]

\[I = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3} \]

\[I = V \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right) \]

\[I = \frac{1}{V} + \frac{1}{R_2} + \frac{1}{R_3} \]
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

\[
\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \quad (6.20)
\]

\(R_{eq} \): Resistencia equivalente.

Si hay \(n \) resistencias conectadas en paralelo, la resistencia equivalente se calcula de la siguiente manera,

\[
\frac{1}{R_{eq}} = \sum_{i=1}^{n} \frac{1}{R_i} \quad (6.21)
\]

De lo anterior se concluye que un conjunto de resistencias en paralelo es equivalente a una resistencia cuyo valor inverso debe ser igual a la suma de los valores inversos de cada resistencia que se encuentre en paralelo, como se muestra en la figura 6.17.

6.18 Circuito eléctrico

Es el conjunto formado por fuentes de voltaje, elementos como resistencias, condensadores, bobinas entre otros, conectados a través de conductores por los cuales circula una corriente (Fig. 6.18).

Fig 6.17 Resistencia equivalente.

Fig 6.18 Circuito eléctrico.
6.19 Parámetros de un circuito

Son los elementos que caracterizan un circuito eléctrico, entre otros, los más comunes son Resistencia, capacidad, bobinas y fuentes de voltaje.

6.20 Nodos en un circuito

Son los puntos de un circuito donde se unen dos o más elementos. Un ejemplo de nodo es el que se muestra en la figura 6.19.

Fig 6.19 Un Nodo es un punto donde se unen dos o más elementos.

6.21 Mallas de un circuito

Es toda trayectoria cerrada de un circuito. Un ejemplo de malla es el que se muestra en la figura 6.20.

Fig 6.20 Una malla es toda trayectoria cerrada en un circuito.
En el circuito de la figura 6.18, hay 7 nodos principales y 4 mallas principales.

6.22 Potencia eléctrica

Supongamos un circuito con una resistencia R por la cual circula una corriente I. Como se muestra en la figura 6.21.

La potencia eléctrica es el trabajo que hace la fuente de voltaje para mover los portadores de carga de un potencial bajo a un potencial alto en la unidad de tiempo, o sea,

$$ P = \frac{W}{t} $$

$$ W = QV $$

$$ P = \frac{QV}{t} $$

La potencia eléctrica que entrega la fuente de voltaje al circuito es entonces,

$$ P = VI \quad (6.22) $$

Si el voltaje se da en voltios y la corriente en amperios, entonces la potencia eléctrica viene dada en Watt.

Según la ley de Ohm,

$$ V = IR $$
Se tiene que, la potencia disipada o consumida en la resistencia \(R \) viene dada por,

\[
P = I^2R \quad (6.23)
\]

La expresión anterior, se le conoce como la Ley de Joule. Es la transformación de la energía eléctrica en energía calorífica.

La energía eléctrica suministrada por una fuente es,

\[
U = Pt
\]

\[
P = V
\]

\[
U = VIt \quad (6.24)
\]

La energía eléctrica consumida por la resistencia,

\[
U = Pt
\]

Aplicando la ley de Joule,

\[
P = I^2R
\]

entonces,

\[
U = I^2Rt \quad (6.25)
\]

La cantidad de calor que se desprende en la resistencia \(R \), se calcula por la siguiente expresión,

\[
Q = 0.24I^2Rt \quad (6.26)
\]

donde \(Q \) viene dado en calorías.

6.23 Máxima transferencia de potencia

En la figura 6.22 se muestra la resistencia interna \(r \) de la fuente de voltaje en serie con una resistencia externa variable \(R \).
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

Se desea determinar el valor de \(R \) para la cual la potencia \(P \) desarrollada en \(R \) sea máxima.

Aplicando la ley de Joule,

\[P = I^2 R \]

pero,

\[I = \frac{V}{r + R} \]

\[P = \left(\frac{V}{r + R} \right)^2 R \]

Para hallar el valor máximo de la potencia,

\[\frac{dP}{dR} = 0 \]

Derivando la ecuación de la potencia con respecto a \(R \) e igualando a cero se llega a,

\[(r + R)^2 - 2R(r + R) = 0 \]

despejando \(R \), se tiene que

\[R = r \]

En consecuencia, la máxima transferencia de potencia a la resistencia \(R \) se tiene cuando dicha resistencia sea igual a la resistencia interna \(r \) de la fuente.
Teniendo en cuenta la expresión,
\[I = \frac{V}{r + R} \]
y como \(R = r \)
\[I = \frac{V}{2R} \]
de donde se concluye que,
\[V_{ab} = \frac{V}{2} \]

Al obtener la máxima transferencia de potencia, la diferencia de potencial en la resistencia \(R \) decae a la mitad del voltaje suministrado por la fuente de voltaje.

6.24 Leyes de Kirchhoff

Hay una gran variedad de métodos para resolver circuitos eléctricos, entre los más importantes se encuentra aplicando las leyes de Kirchhoff. Estas leyes son las siguientes:

a) Ley de Nodos
La suma algebraica de las corrientes que concurren a un nodo es igual a cero. Las corrientes que entran a un nodo se consideran positivas y las corrientes que salen del nodo se consideran negativas. Esta ley se basa en el principio de conservación de la carga eléctrica (Fig. 6.23).

![Fig. 6.23 Corrientes que concurren a un nodo.](image)
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

\[I_1 - I_2 + I_3 - I_4 = 0 \] \hspace{1cm} (6.27)

b) LEY DE MALLAS: La suma algebraica de los voltajes aplicados y las caídas de potencial en una malla cualquiera es cero. Los voltajes aplicados se consideran positivos y las caídas de potencial se consideran negativas. Esta ley se basa en el principio de conservación de la energía (Fig. 6.24).

![Figura 6.24: Variación del potencial a través de una malla.](image)

\[V - V_1 + V_2 - V_3 = 0 \] \hspace{1cm} (6.28)

6.25 Transformaciones triángulo - estrella (Δ - Y)

Existen muchos circuitos que no se pueden simplificar utilizando solamente combinaciones de serie o paralelo. En estos casos, se puede utilizar un método llamado Transformación Triángulo - Estrella.

Supongamos un circuito con tres resistencias conectadas en forma de triángulo y por eso se tiene tres terminales, como se muestra en la figura 6.25.

Vamos a transformar la conexión en triángulo a una conexión equivalente en estrella, cuyas resistencias sean \(R_1 \), \(R_2 \) y \(R_3 \), como se muestra en la figura 6.26.

En la conexión triángulo, la resistencia equivalente entre los terminales 1 y 2 es:
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

Fig 6.25 Resistencias conectadas en triángulo. Fig 6.26 Conexión equivalente en estrella.

En la conexión estrella, la resistencia equivalente entre los terminales 1 y 2 es:

$$R_{eq} = \frac{R_{12}(R_{13} + R_{23})}{R_{12} + R_{23} + R_{13}}$$

Igualando se tiene,

$$R_{1} + R_{2} = \frac{R_{12}(R_{13} + R_{23})}{R_{12} + R_{23} + R_{13}} \quad (1)$$

En la conexión triángulo, la resistencia equivalente entre los terminales 2 y 3 es:

$$R_{eq} = \frac{R_{23}(R_{12} + R_{13})}{R_{12} + R_{23} + R_{13}}$$

En la conexión estrella, la resistencia equivalente entre los terminales 2 y 3 es:

$$R_{eq} = R_{2} + R_{3}$$

Igualando se tiene,

$$R_{2} + R_{3} = \frac{R_{23}(R_{12} + R_{13})}{R_{12} + R_{23} + R_{13}} \quad (2)$$
En la conexión triángulo, la resistencia equivalente entre los terminales 1 y 3 es:

\[R_{eq} = \frac{R_{13} (R_{12} + R_{23})}{R_{12} + R_{23} + R_{13}} \]

En la conexión estrella, la resistencia equivalente entre los terminales 1 y 3 es:

\[R_{eq} = R_1 + R_3 \]

Igualando se tiene,

\[R_1 + R_3 = \frac{R_{13} (R_{12} + R_{23})}{R_{12} + R_{23} + R_{13}} \quad (3) \]

Resolviendo el sistema de tres ecuaciones (1), (2) y (3) con tres incógnitas, se llega a:

\[R_1 = \frac{R_{12} R_{13}}{R_{12} + R_{23} + R_{13}} \quad (6.29) \]

\[R_2 = \frac{R_{12} R_{23}}{R_{12} + R_{23} + R_{13}} \quad (6.30) \]

\[R_3 = \frac{R_{13} R_{23}}{R_{12} + R_{23} + R_{13}} \quad (6.31) \]

6.26 Transformación estrella - triángulo (Y - Δ)

Supongamos tres resistencias conectadas en forma de estrella, como se muestra en la figura 6.27.
Vamos a transformar el circuito en estrella a un circuito equivalente en triángulo cuyas resistencias sean R_{12}, R_{13} y R_{23} como se muestra en la figura 6.28.

Considerando las ecuaciones (6.29), (6.30) y (6.31) se tiene,

\[
R_1 = \frac{R_{12}R_{13}}{R_0}
\]
\[
R_2 = \frac{R_{12}R_{23}}{R_0}
\]
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

\[R_3 = \frac{R_{12} R_{23}}{R_n} \]

donde,

\[R_n = R_{12} + R_{23} + R_{13} \]

Haciendo los siguientes productos,

\[R_1 R_2 = \frac{R_{12}^2 R_{13} R_{23}}{R_n^2} \]

\[R_2 R_3 = \frac{R_{23}^2 R_{11} R_{12}}{R_n^2} \]

\[R_1 R_3 = \frac{R_{13}^2 R_{23} R_{12}}{R_n^2} \]

Sumando

\[R_1 R_2 + R_2 R_3 + R_1 R_3 = \frac{R_{12}^2 R_{13} R_{23} + R_{12} R_{13} R_{23}^2 + R_{13} R_{12} R_{23}^2}{R_n^2} \]

Haciendo,

\[R_o = R_1 R_2 + R_2 R_3 + R_1 R_3 \]

Entonces,

\[R_n = \frac{R_{12} R_{13} R_{23}}{R_o} \]

Teniendo en cuenta la ecuación anterior y las ecuaciones (6.29), (6.30) y (6.31), se tiene,

\[R_{12} = \frac{R_o}{R_3} \quad (6.32) \]

\[R_{13} = \frac{R_o}{R_2} \quad (6.33) \]
6.27 Circuito Rc

Si a un condensador de capacidad C y una resistencia R, conectados en serie como se muestra en la figura 6.29, se alimentan por medio de una fuente de voltaje constante V, circulará por la resistencia una corriente que cargará el condensador.

Pasando el interruptor a la posición 1 y aplicando la ley de mallas de Kirchhoff,

$$V = iR + \frac{Q}{C}$$

pero,

$$i = \frac{dQ}{dt}$$

entonces,

$$V = \frac{dQ}{dt}R + \frac{Q}{C}$$

$$\frac{dQ}{dt} + C = \frac{V}{R}$$
Resolviendo la ecuación diferencial,

\[Q = CV \left(1 - e^{-\frac{t}{RC}} \right) \]

\[\frac{Q}{C} = V \left(1 - e^{-\frac{t}{RC}} \right) \]

\[V_c = V \left(1 - e^{-\frac{t}{RC}} \right) \]

where,

\[V_c \]: Diferencia de potencial del condensador.

Derivando la ecuación (6.35) con respecto a \(t \) se llega a,

\[i = \frac{V}{R} e^{-\frac{t}{RC}} \]

Las gráficas del comportamiento del voltaje \(V_c \) y de la corriente \(i \) en un circuito \(R_C \) son las siguientes:

[Graph showing the behavior of \(V(t) \) and \(i(t) \) with time]

Fig 6.30 Comportamiento de \(V_c \) y de \(i \) en un circuito \(R_C \) cuando el condensador se carga.

Haciendo,

\[t = \tau = RC \]

\[0.63 \text{ V} \]

\[1 \]

\[t \]

\[t \]
Siendo t, la constante de tiempo del circuito, que viene a ser el tiempo que tarda el condensador en cargarse hasta adquirir un 63% del voltaje máximo V.

Se tiene que $V_c = 0.63 \, V$.

Pasando el interruptor a la posición 2, como se muestra en la figura 6.31.

![Fig 6.31 Circuito de descarga del condensador.](image)

Aplicando la ley de mallas de Kirchhoff,

\[iR + \frac{Q}{C} = 0 \]

\[\frac{dQ}{dt} + \frac{Q}{RC} = 0 \]

resolviendo la ecuación diferencial,

\[Q = Cve^{\frac{i}{Rc}} \quad (6.39) \]

\[\frac{Q}{C} = ve^{ \frac{i}{Rc}} \]

\[V_c = ve^{ \frac{i}{Rc}} \quad (6.40) \]

Derivando con respecto al tiempo la expresión de la carga,
El signo menos indica que la corriente va en sentido contrario debido a la descarga del condensador.

Haciendo,
\[t = \tau = RC \]

Siendo \(\tau \), la constante de tiempo del circuito, que viene a ser el tiempo que tarda el condensador en descargarse hasta un 37% del voltaje máximo \(V \). O sea que, \(V_c = 0.37 \) V.

Las gráficas que se muestran a continuación indican como es el comportamiento del voltaje \(V_c \) entre las placas del condensador y de la corriente \(i \) que circula por el circuito cuando el condensador se descarga a través de la resistencia.

El voltaje \(V_c \) entre las placas del condensador disminuye exponencialmente debido a que éste se descarga a través de la resistencia \(R \); así mismo, la corriente disminuye exponencialmente ya que la energía almacenada en el condensador es devuelta al circuito, disipándose en forma de calor en la resistencia \(R \).

Fig 6.32 Comportamiento de \(V_c \) y de \(i \) en un circuito RC cuando el condensador se descarga.
6.1 En el modelo de Bohr del átomo de hidrógeno, un electrón en el estado de energía más bajo sigue una trayectoria circular a 5.29×10^{-11} m del protón. Calcule la velocidad del electrón y la corriente asociada a éste.

$$v = \sqrt{\frac{9 \times 10^9 e^2}{rm}} \cdot \left(\frac{1.6 \times 10^{-19}}{5.29 \times 10^{-11}}\right) = 2.19 \times 10^6 \text{ m/s}$$

$$v = \frac{\omega r}{r} = \frac{2.19 \times 10^6}{5.29 \times 10^{-11}} = 4.14 \times 10^{16} \text{ rad/s}$$

$$\omega = \frac{2\pi}{T} \Rightarrow T = \frac{2\pi}{\omega} = \frac{2\pi}{4.14 \times 10^{16}} = 1.5 \times 10^{-16} \text{ s}$$

$$I = \frac{Q}{t} = \frac{1.6 \times 10^{-19}}{1.5 \times 10^{36}} = 1.05 \times 10^{-3} \text{ A}$$

6.2 Una barra de distribución de cobre tiene una sección transversal de 5 cm x 15 cm y conduce una corriente con una densidad de 2000 A/cm², a) cuál es la corriente total en la barra de distribución, b) cuánta carga pasa por un punto dado en la barra por hora.
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

\[J = \frac{I}{A} \Rightarrow I = JA \]

\[I = (2000 \times 1.5 \times 5) = 150000 \, \text{A} \]

\[I = \frac{Q}{t} \Rightarrow Q = It \]

\[Q = (150000 \times 3600) = 5.4 \times 10^8 \, \text{coul} \]

6.3 Calcule la velocidad de arrastre promedio de los electrones que viajan por un alambre de cobre con un área de sección transversal de 1 mm\(^2\) cuando conducen una corriente de 1 A. Se sabe que aproximadamente un electrón por átomo contribuye a la corriente. El peso atómico del cobre es 63.54 gm/mol y su densidad es de 8.92 gm/cm\(^3\).

El volumen ocupado por 63.54 gm/mol,

\[V = \frac{m}{\delta} = \frac{63.54}{8.92} = 7.12 \, \text{cm}^3 \]

Si cada átomo de cobre aporta un electrón al cuerpo del material,

\[n = \frac{N}{V} = \frac{6.02 \times 10^{23}}{7.12} = 8.45 \times 10^{22} \, \text{electrones/cm}^3 = 8.45 \times 10^{28} \, \text{electrones/m}^3 \]

\[J = \frac{I}{A} = nev_d \]

\[v_d = \frac{1}{neA} = \frac{1}{(8.45 \times 10^{28}) \left(1.6 \times 10^{-19}\right) \left(1 \times 10^{-4}\right)} = 7.39 \times 10^{-5} \, \text{m/s} \]

6.4 En el circuito de la figura, determine la corriente que suministra la fuente.
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

La resistencia equivalente entre la
\[R_{eq1} = (7+1+10) \, \Omega = 18 \, \Omega \]

El circuito equivalente es,

La resistencia equivalente entre las que se encuentra en paralelo, es:
\[\frac{1}{R_{eq2}} = \frac{1}{6} + \frac{1}{18} \Rightarrow R_{eq2} = 4.5 \, \Omega \]

el circuito equivalente es,

Como las tres resistencias se encuentran en serie, la resistencia equivalente del circuito es,
\[R_{eq} = (2+4.5+8) \, \Omega = 14.5 \, \Omega \]

El circuito equivalente es,

Aplicando la ley de Ohm al circuito,
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

$$V = IR_{eq} \Rightarrow I = \frac{V}{R_{eq}} = \frac{15}{14.5} = 1.03 \text{ A}$$

6.5 Tres resistencias iguales se conectan en serie, cuando se aplica una diferencia de potencial a la combinación, esta consume una potencia total de 10 watt. ¿Qué potencia consumirá si las tres resistencias se conectan en paralelo a la misma diferencia de potencial.

$$P = VI \Rightarrow P = V \left(\frac{V}{R_1} \right) = \frac{V^2}{R_1} \Rightarrow R_1 = 3R$$

$$10 = \frac{V^2}{3R} \Rightarrow V^2 = 30R$$

En paralelo,

$$\frac{1}{R_1} = \frac{1}{3} + \frac{1}{R} + \frac{1}{R} \Rightarrow R_1 = \frac{R}{3}$$

$$P = \frac{V^2}{R_1} = \frac{30R}{\frac{R}{3}} = 90 \text{ watt}$$

6.6 Si un alambre de cobre tiene una resistencia de 18 Ω a 20 °C, qué resistencia tendrá a 60 °C. (ignora los cambios en la longitud o en el área de sección transversal debido al cambio de temperatura). El coeficiente de temperatura del cobre es de 0.00427 °C$^{-1}$ a partir de 0 °C.

$$R_1 = R_0 \left[1 + \alpha_0 (T - T_0) \right]$$

$$R_Z = \frac{R_1}{\left[1 + \alpha_0 (T - T_0) \right]} = \frac{18}{1 + (0.00427)(20 - 0)} = 16.58 \text{ °C}$$

$$R_2 = 16.58 \left[1 + 0.00427 (60 - 0) \right] = 20.8 \text{ } \Omega$$
6.7 Un conductor cilíndrico hueco (cable coaxial) de resistividad \(\rho \), longitud \(L \), tiene radios \(R_1 \) y \(R_2 \). Se aplica una diferencia de potencial entre las superficies interior y exterior de modo que la corriente \(I \) fluya en dirección radial hacia fuera. Determine la resistencia de este conductor.

El conductor se muestra en la figura, se debe utilizar la expresión de la resistencia en términos de la geometría del conductor, o sea,

\[
R = \frac{\rho L}{A}
\]

La forma diferencial de esta ecuación es,

\[
dR = \frac{\rho dr}{A}
\]

El área a través de la cual pasa la corriente es \(A = 2\pi rL \) pues la corriente es radial.

\[
R = \frac{\rho}{2\pi L} \int_{R_1}^{R_2} \frac{dr}{r} = \frac{\rho}{2\pi L} \ln \left(\frac{R_2}{R_1} \right)
\]

6.8 El circuito de la figura se llama puente de Wheatstone. Se usa para medir resistencias. Demuestre que cuando la corriente a través del galvanómetro G es cero (los nodos a y b quedan al mismo potencial), se cumple que si se conocen tres resistencias se puede encontrar el valor de una cuarta resistencia.

Aplicando la ley de nodos a los nodos a y b,
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

Nodo a:
\[i_1 - i_2 + i_g = 0 \] (1)

Nodo b:
\[i_3 - i_4 - i_g = 0 \] (2)

Aplicando la ley de mallas abc y adb:
\[-I_1 R_1 + I_2 R_4 = 0 \Rightarrow I_1 = I_2, R_4 \] (3)
\[-I_2 R_2 + I_4 R_3 = 0 \Rightarrow I_2 = I_4, R_3 \] (4)

Como \(i_g = 0 \)
\[I_1 = I_2 \] (5)
\[I_3 = I_4 \] (6)

Dividiendo (3) en (4) y teniendo en cuenta las ecuaciones (5) y (6),
\[\frac{I_1 R_1}{I_2 R_2} = \frac{I_3 R_4}{I_4 R_3} \Rightarrow \frac{R_1}{R_2} = \frac{R_4}{R_3} \]

6.9. Para el circuito de la figura, determine la corriente que pasa por cada resistencia.

\[R_1 = 4 \ \Omega \]
\[R_2 = 3 \ \Omega \]
\[R_3 = 1 \ \Omega \]
\[R_4 = 2 \ \Omega \]
\[R_5 = 6 \ \Omega \]
\[V_1 = 10 \ V \]
\[V_2 = 2 \ V \]

Aplicando la segunda ley de Mallas de Kirchhoff,
Malla de \(I_1 \):
\[
(R_1 + R_2) I_1 - 0 I_2 - R_3 I_3 = V_1 - V_2
\]

Malla de \(I_2 \):
\[
0 I_1 + (R_2 + R_4) I_2 - R_4 I_3 = V_2
\]

Malla de \(I_3 \):
\[
-R_3 I_1 - R_4 I_2 + (R_3 + R_4 + R_5) I_3 = 0
\]

Resolviendo el sistema de tres ecuaciones con tres incógnitas, se tiene,
\[
I_1 = 1.66 \text{ A}
\]
\[
I_2 = 0.52 \text{ A}
\]
\[
I_3 = 0.30 \text{ A}
\]

Para hallar la corriente que circula por cada resistencia,
\[
IR_1 = I_1 = 1.66 \text{ A}
\]
\[
IR_2 = I_2 = 0.52 \text{ A}
\]
\[
IR_3 = I_1 - I_3 = 1.66 - 0.3 = 1.36 \text{ A}
\]
\[
IR_4 = I_2 - I_3 = 0.52 - 0.3 = 0.22 \text{ A}
\]

6.10 Los valores de los elementos del circuito RC que se muestra en la figura son:
\[
V = 10 \text{ voltios}
\]
\[
R = 2 \text{ M } \Omega
\]
\[
C = 1 \mu \text{ F}
\]
Para el instante en que han pasado 10 s después de cerrarse el interruptor S, calcule: a) la carga en el condensador, b) la corriente en la resistencia R, c) la rapidez con la cual se almacena energía en el condensador, d) la rapidez con la cual la fuente entrega energía al circuito.

a) \[Q = CV \left(1 - e^{-\frac{t}{\tau}} \right) \]

\[Q = \left(10^{-6} \right) \left(10 \right) \left(1 - e^{-\frac{10}{2 \times 10^6}} \right) = 9.93 \mu \text{Coul} \]

b) \[i = \frac{V}{R} e^{-\frac{t}{\tau}} \]

\[i = \frac{10}{2 \times 10^6} e^{-\frac{10}{2 \times 10^6}} = 3.37 \times 10^{-8} \text{ A} \]

c) \[P_c = V_c i \]

\[P_c = V \left(1 - e^{-\frac{10}{2 \times 10^6}} \right) \left(\frac{V}{R} e^{-\frac{t}{\tau}} \right) = \frac{V^2}{R} \left(1 - e^{-\frac{10}{2 \times 10^6}} \right) e^{-\frac{t}{\tau}} = 3.34 \times 10^{-7} \text{ watt} \]

d) \[P_f = V i \]

\[P_f = V \left(\frac{V}{R} e^{-\frac{t}{\tau}} \right) = \frac{V^2}{R} \left(e^{-\frac{t}{\tau}} \right) \]

\[P_f = \left(10 \right)^2 \frac{1}{2 \times 10^6} e^{-\frac{10}{2 \times 10^6}} = 3.37 \times 10^{-7} \text{ watt} \]
1- Un conductor cilíndrico hueco, de longitud \(L \) tiene radios \(R_1 \) y \(R_2 \). Se aplica una diferencia de potencial entre sus extremos de tal modo que una corriente fluye paralelamente a su eje. Hallar la resistencia del conductor si su resistividad es \(\rho \).

Respuesta:
\[R = \frac{\rho L}{\pi (R_2^2 - R_1^2)} \]

2- El circuito que se muestra en la figura, tiene los siguientes valores: \(R_1 = 1 \Omega \), \(R_2 = 2 \Omega \), \(R_3 = 3 \Omega \), \(R_4 = 4 \Omega \), \(R_5 = 5 \Omega \), \(R_6 = 6 \Omega \), \(R_7 = 7 \Omega \), \(V = 100 \) Voltios. Hallar:

a) Corriente que circula por cada resistencia
b) Potencia consumida por cada resistencia
c) Potencia total consumida por el circuito
d) Potencia suministrada por la fuente

Respuesta:

a) \(I_1 = 12 \) A, \(I_2 = 6 \) A, \(I_3 = 4 \) A, \(I_4 = 12.1 \) A, \(I_5 = 6.5 \) A, \(I_6 = 5.6 \) A.
b) \(P_1 = 144 \) watt, \(P_2 = 72 \) watt, \(P_3 = 48 \) watt, \(P_4 = 1936 \) watt, \(P_5 = 732.1 \) watt, \(P_6 = 253.5 \) watt, \(P_7 = 219.5 \) watt.
c) \(P_t \approx 3410 \) watt
d) \(P_v \approx 3410 \) watt
3- La densidad de corriente J en un alambre largo y recto con sección transversal circular de radio R, varía con la distancia desde el centro del alambre, de acuerdo con la relación $J = \lambda r$, en que λ es una constante de proporcionalidad y r es la distancia al centro. Hallar la corriente que fluye por el alambre.

Respuesta: $I = \frac{2\pi \lambda R^3}{3}$

4- En el circuito que se muestra en la figura, el condensador está inicialmente descargado estando abierto el interruptor. En el instante $t = 0$, se cierra el interruptor:

a) Cuál es la corriente suministrada por la fuente de voltaje en el momento que se cierra el interruptor.

b) Cuál es la corriente total en el estado estacionario.

c) Cuál es la corriente que suministra la fuente para cualquier tiempo t.

d) Cuál es la corriente que circula por el condensador para cualquier tiempo t.

e) Cuál es la corriente que circula por la resistencia R_1 para cualquier tiempo t.

f) Cuál es la corriente que circula por la resistencia R_2 para cualquier tiempo t.

Los datos de los elementos son:

$R_1 = 5 \, K\Omega$, $R_2 = 5 \, K\Omega$, $C = 2 \, \mu F$, $V = 20$ voltios

Respuesta:

a) $I = 8 \, mA$

b) $I = 4 \, mA$

c) $I = 4 \times 10^{-3} (1 + e^{-100t})$

d) $I = 4 \times 10^{-4} e^{100t}$

e) $I = 4 \times 10^{-3} e^{100t}$

f) $I = 4 \times 10^{-3} A$
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

5- Un conductor cilíndrico de radio 2 mm, la densidad de corriente varía desde el eje de acuerdo a:
\[J = 10^3 e^{-400r} \text{ (A/m}^2\text{)}, \text{ donde } r \text{ es la distancia al centro. Hallar la corriente total } I.

Respuesta: \(I = 7.51 \text{ mA} \)

6- Se tiene el circuito que se muestra en la figura.

![Circuito](image)

\(C_1 = 6 \ \mu\text{F}, \ C_2 = 3 \ \mu\text{F}, \ R_1 = 6 \ \Omega, \ R_2 = 3 \ \Omega \) y \(V = 18 \text{ voltios} \).

a) Cuál es la diferencia de potencial entre los puntos a y b cuando el interruptor S está abierto.
b) Cuál de los puntos a o b, está a mayor potencial.
c) Cuál será el potencial final del punto b cuando se cierra el interruptor S.
d) Qué cantidad de carga fluirá a través del interruptor S al cerrarlo.

Respuesta:
a) \(V = 6 \text{ voltios} \)
b) Punto b
c) \(V = 6 \text{ voltios} \)
d) \(Q = 18 \ \mu\text{coul} \)

7- Determine los voltajes en los nodos 1 y 2 del circuito que se muestra en la figura. Utilizando la ley de Nodos.

\[
\begin{align*}
R_1 &= 1 \ \Omega \\
R_2 &= 2 \ \Omega \\
R_3 &= 3 \ \Omega \\
V_1 &= 10 \ \text{V} \\
V_2 &= 20 \ \text{V}
\end{align*}
\]
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

Respuesta:

\[v_1 = \frac{100}{11} \text{ V} \]
\[v_2 = -\frac{120}{11} \text{ V} \]

8- Hallar la corriente que circula por cada conductor en el circuito que se muestra en la figura.
\[R_1 = 1 \Omega, \quad R_2 = 2 \Omega, \quad R_3 = 3 \Omega, \quad R_4 = 4 \Omega, \quad R_5 = 5 \Omega \quad V = 10 \text{ voltios} \]

Respuesta:

\[I_1 = 1.76 \text{ A} \]
\[I_2 = 3.24 \text{ A} \]
\[I_3 = 0.59 \text{ A} \]
\[I_4 = 0.89 \text{ A} \]
\[I_5 = 2.35 \text{ A} \]

9- Hallar la resistencia eléctrica de un codo de barra colectora doblada en forma de cuadrante de anillo circular de resistividad \(\rho \), como se muestra en la figura.

Respuesta:

\[R = \frac{\pi \rho}{2c \ln \left(\frac{a + b}{a} \right)} \]

10- Al tratar de medir una resistencia \(R \), se conectan un amperímetro de resistencia interna \(r \) y un voltímetro de resistencia interna \(R_m \) con una batería \(E \) como se muestra en la figura. Si el voltímetro marca un voltaje \(V \) y el amperímetro una corriente \(I \). Halle la resistencia \(R \), si a) se conectan los aparatos de medida como se muestra en la figura (a), b) se conectan los aparatos de medida como se muestra en la figura (b), c) indique para qué casos se utiliza la conexión (a) y la conexión (b).

Respuesta:

a) \[\frac{I}{R} = \frac{I}{V} - \frac{1}{R_m} \]

b) \[R = \frac{V}{I} - r \]
Capítulo 6. Corriente Eléctrica y Circuitos de Corriente Continua

Diagrama de circuitos con un generador (E) y resistencias (R).

Diagrama de circuitos con un generador (E) y un interruptor.
Capítulo 7

Campo Magnético

NIKOLA TESLA
1856 - 1943 - Yugoslavia
Capítulo 7. Campo Magnético

7.1 Introducción

Las primeras observaciones que se hicieron sobre el magnetismo son muy antiguas. Se piensa que fueron los griegos los primeros en observar dichos fenómenos en una ciudad del Asia, llamada Magnesia. Encontraron que en esa región existían ciertas piedras que eran capaces de atraer pequeños trozos de hierro. En la actualidad se sabe que estas piedras están constituidas por óxido de hierro llamado "Magnetita", y se les denomina imanes naturales. De manera que el término magnetismo se usó para describir las propiedades que tienen éstas piedras en honor a la ciudad en donde fueron encontradas.

7.2 Campo magnético

El campo magnético es una región del espacio en la cual una carga eléctrica puntual que se desplaza, sufre los efectos de una fuerza que es perpendicular a su desplazamiento. El campo magnético en un punto se representa por un vector \(\mathbf{B} \) llamado \(\text{Inducción magnética} \) o \(\text{Densidad de flujo magnético} \) y se puede visualizar por medio de líneas de inducción que deben cumplir con lo siguiente:

a) La tangente a una línea de inducción en un punto cualquiera indica la dirección de \(\mathbf{B} \) en ese punto (Fig. 7.1a.)

b) La magnitud de la inducción magnética \(B \) es proporcional al número de líneas de inducción por unidad de área de sección transversal.

![Fig. 7.1](image)
Capítulo 7. Campo Magnético

b) Las líneas de inducción se dibujan de tal manera que el número de ellas por unidad de área de sección transversal sea proporcional a la magnitud de \(B \). Si las líneas están muy cercanas entre sí, la magnitud de \(B \) es mayor y donde están muy separadas, la magnitud de \(B \) es menor (Fig. 7.1b).

7.3 Inducción magnética

Si una carga positiva \(Q_0 \) se mueve con una velocidad \(\vec{v} \) en una región donde existe una Inducción Magnética \(\vec{B} \), ésta experimenta una fuerza \(\vec{F} \) perpendicular al plano determinado por los vectores \(\vec{v} \) y \(\vec{B} \) (Fig. 7.2).

![Fig. 7.2 La fuerza magnética \(\vec{F} \) siempre es perpendicular al plano que contiene a los vectores \(\vec{v} \) y \(\vec{B} \).](image)

La fuerza \(\vec{F} \) está dada por la expresión:

\[
\vec{F} = Q_0 \vec{v} \times \vec{B}
\]

(7.1)

Si en una región del espacio existe un campo magnético \(\vec{B} \) y un campo eléctrico \(\vec{E} \), la fuerza total que actúa sobre la carga \(Q_0 \) viene dada por la siguiente expresión conocida como la Fuerza de Lorentz.

\[
\vec{F} = Q_0 \vec{v} \times \vec{B} + Q_0 \vec{E}
\]

(7.2)

7.4 Unidades de la inducción magnética

a) SISTEMA CGS (Electromagnético).
Capítulo 7. Campo Magnético

Un Gauss es la inducción magnética para que una carga de un AbCoulomb que se mueve con una velocidad de un cm/s experimente una fuerza perpendicular de una Dina.

b) SISTEMA MKS

Un Tesla (T) es la inducción magnética para que una carga de un Coulomb que se mueve con una velocidad de un m/s experimente una fuerza lateral de un Newton.

En el sistema CGS electromagnético la unidad de la inducción magnética es el Gauss que se utiliza mucho en la práctica.

1 Tesla = 10^4 Gauss

7.5 Flujo magnético

Representa la cantidad de líneas de inducción que atraviesa una superficie cualquiera (Fig. 7.3).

Fig. 7.3 Líneas de inducción que atraviesan una superficie cualquiera.
Capítulo 7. Campo Magnético

Se define por la expresión:

\[\Phi = \int \mathbf{B} \cdot d\mathbf{S} \quad (7.3) \]

donde \(\mathbf{B} \) es la inducción magnética que atraviesa un diferencial de superficie \(d\mathbf{S} \).

7.6 Unidades del flujo magnético

a) SISTEMA CGS

- \(B \): Gauss
- \(S \): cm²
- \(\Phi \): Maxwell

Un Maxwell es el flujo magnético que resulta cuando una Inducción Magnética de un Gauss atraviesa una superficie de un cm².

b) SISTEMA MKS

- \(B \): Weber/m²
- \(S \): m²
- \(\Phi \): Weber

Un Weber es el flujo magnético que resulta cuando una Inducción Magnética de un Weber/m² atraviesa una superficie de un m².

7.7 Ley de Gauss para el magnetismo

Como en magnetismo no existen polos magnéticos aislados sus líneas de inducción siempre son cerradas. Por lo tanto, el flujo magnético que atraviesa una superficie gaussiana es cero (Fig. 7.4).
7.8 Fuerza magnética sobre un conductor por el cual circula una corriente

Debido a que un campo magnético ejerce una fuerza perpendicular sobre una carga en movimiento, ejercerá también una fuerza perpendicular sobre un conductor por el cual circula una corriente eléctrica \(I \), como se muestra en la figura 7.5a.

Tomando la expresión (7.1) para el diferencial del conductor,

\[
d\vec{F} = dQ \vec{v} \times \vec{B}
\]
Capítulo 7. Campo Magnético

\[dF = dQ \frac{di}{dt} \times B \]

Por lo tanto,

\[dF = I dI \times B \quad (7.5) \]

Si el conductor es recto con una longitud L, como se muestra en la figura 7.5(b), la fuerza sobre éste se calcula partiendo de la expresión (7.5).

\[dF = I dI B \text{sen} 90 \]

\[dF = I dI B \]

\[F = \int_0^L I dI B = I B \int_0^L dI \]

\[F = IBL \quad (7.6) \]

La dirección de la fuerza F se determina aplicando la regla de la mano derecha, como se observa en la figura 7.5(b).

7.9 Momento o torque sobre una espira con corriente

Supongamos una espira por la cual circula una corriente constante I en el interior de un campo magnético B, como se muestra en la figura 7.6(a).
Para determinar la fuerza que se ejerce sobre cada sección recta de la espira, se utiliza la expresión (7.6).

Para la sección AB:
\[F_1 = IbB \]

Para la sección BC:
\[F_2 = laB \]

Para la sección CD:
\[F_1 = IbB \]

Para la sección DA:
\[F_2 = laB \]

Las direcciones de las fuerzas son como se muestra en la figura 7.6a. Según lo anterior, la fuerza total sobre la espira es cero.

Ahora analicemos nuevamente la espira pero cuando se ha girado un ángulo \(\theta \) con respecto a la dirección del campo magnético \(B \), como se muestra en la figura 7.6b. Se observa que las fuerzas \(F_1 \) que actúan sobre los lados AB y CD de la espira producen un momento con respecto a O y que las fuerzas \(F_2 \) que actúan sobre los lados BC y DA se anulan. Por lo tanto, el momento con respecto a O es,
Capítulo 7. Campo Magnético

\[M_0 = F_2 a \frac{d}{2} \sin \theta + F_2 a \frac{d}{2} \sin \theta \]
\[M_x = F_1 a \sin \theta \quad \therefore \quad F_1 = IBb \]
\[M_y = IBa b \sin \theta \quad \therefore \quad A = ab \]
\[M_z = IBA \sin \theta \]

donde \(A \), es el área de la espira; si se colocan \(N \) espiras, el momento total con respecto a \(O \) es,
\[M = NIBa \sin \theta \]
definiendo,
\[\mu = NIA \]

donde \(\mu \) se le llama Momento de dipolo magnético y se representa por un vector \(\vec{\mu} \) cuya dirección es perpendicular al plano de la espira y el sentido es el que se muestra en la figura 7.6b. Por lo tanto, el momento de la espira es,
\[\vec{M}_0 = \vec{\mu} \times \vec{B} \quad (7.7) \]

Para hallar el sentido de \(\vec{\mu} \), se coge la espira de perfil con la mano derecha, de tal manera que los dedos tengan la misma dirección de la corriente por la espira; la dirección del pulgar indicará el sentido del vector momento de dipolo magnético (Fig. 7.6b).

7.10 Energía potencial almacenada en el sistema espira - campo magnético

El trabajo realizado para hacer girar una espira dentro de un campo magnético \(\vec{B} \) queda almacenado como energía potencial \(U \) en el sistema compuesto por la espira y el campo magnético \(\vec{B} \).
W = \int_{\theta_0}^{\theta} M_{\theta} \, d\theta

W = \int_{\theta_0}^{\theta} \mu B \, \text{sen} \, \theta \, d\theta = \mu B \int_{\theta_0}^{\theta} \, \text{sen} \, \theta \, d\theta

W = \mu B \left(-\cos \theta + \cos \theta_0 \right)

U = W

U = \mu B \left(-\cos \theta + \cos \theta_0 \right)

Haciendo $\theta_0 = \pi / 2$ (ángulo de referencia). De manera que,

$$U = -\mu \cdot \vec{B} \quad (7.8)$$

7.11 Carga aislada dentro de un campo magnético

Considere una carga Q de masa m que se mueve con una velocidad \(\vec{v} \) perpendicular a la dirección de un campo magnético constante \(\vec{B} \) (Fig. 7.7).

![Fig. 7.7 Toda carga eléctrica que se mueve perpendicularmente a un campo magnético externo experimenta una trayectoria circular.](image-url)
Sobre la carga actúa una fuerza magnética \vec{F} (fuerza centripeta), de manera que,

$$F = m \frac{v^2}{R}$$

pero,

$$F = Q v B \sin 90 = Q v B$$

$$Q v B = m \frac{v^2}{R}$$

La partícula de carga Q de desplazará en una trayectoria circular de radio dada por

$$R = \frac{m v}{Q B} \quad (7.9)$$

Para determinar la frecuencia con que gira la partícula,

$$v = \omega R$$

$$\omega = \frac{v}{R} = \frac{v}{\frac{v}{Q B}} = \frac{Q B}{m}$$

$$\omega = 2 \pi f$$

$$2 \pi f = \frac{Q B}{m}$$

$$f = \frac{Q B}{2 \pi m} \quad (7.10)$$

La frecuencia f se le conoce como Frecuencia de Ciclotrón.
Capítulo 7. Campo Magnético

7.1 Un protón se mueve con una velocidad de 8×10^6 m/s, a lo largo del eje X. El protón entra a una región donde se tiene un campo magnético de 2.5 T, su dirección forma un ángulo de 60° con el eje X y está en el plano XY. Halle la fuerza magnética y aceleración del protón.

$$F = Q \cdot v \times B$$

$$F = Q \cdot v \cdot B \cdot \sin \theta$$

$$F = (1.6 \times 10^{-19}) (8 \times 10^6) (2.5) \cdot \sin 60° = 2.8 \times 10^{-12} \text{ Nw}$$

$$a = \frac{F}{m} = \frac{2.8 \times 10^{-12}}{1.67 \times 10^{-27}} = 1.67 \times 10^{15} \text{ m/s}^2$$

7.2 Un alambre al que se le da la forma de semicircunferencia de radio R forma un circuito cerrado y lleva una corriente I. El circuito se muestra en el plano XY y está frente a un campo magnético uniforme a lo largo del eje Y positivo. Determine la fuerza magnética sobre la porción recta y curva del alambre.

Para la sección curva:

$$dF = I \cdot dl \cdot B \cdot \sin \theta$$

$$F = I \cdot B \int dl \cdot \sin \theta$$

$$l = R \theta \Rightarrow dl = R \, d\theta$$
Capítulo 7. Campo Magnético

\[F = IB \int R \sin \theta \, d\theta \]

\[F = 1BR \int_{0}^{\pi} \sin \theta \, d\theta \]

\[F = 2RIB \]

La fuerza tiene la dirección Z negativo.

Para la sección recta:

\[F = \frac{I}{B} \Rightarrow F = 2RIB \]

La fuerza tiene la dirección Z positivo.

7.3 Un protón se mueve en una órbita circular con un radio de 14 cm, cuando se coloca en un campo magnético uniforme de magnitud 0.35 Weber/m², dirigido perpendicularmente a la velocidad del protón. Determine la velocidad del protón, su frecuencia angular y su período de revolución.

\[R = \frac{mv}{QB} \Rightarrow v = \frac{QBR}{m} \]

\[v = \left(\frac{1.6 \times 10^{-19} \times 0.35}{1.67 \times 10^{-25}} \times 0.14 \right) = 4.69 \times 10^6 \text{ m/s} \]

\[\omega = \frac{QBR}{m} = \left(\frac{1.6 \times 10^{-19} \times 0.35}{1.67 \times 10^{-27}} \right) = 3.35 \times 10^7 \text{ rad/s} \]

\[T = \frac{2\pi}{\omega} = \frac{2\pi}{3.35 \times 10^7} = 1.87 \times 10^{-7} \text{ s} \]

7.4 Una bobina consta de 40 vueltas y sus dimensiones son 0.25 m por 0.2 m. La bobina está articulada a lo largo del eje Y y el plano de la bobina forma un ángulo de 45° con el eje X. Halle el momento de torsión ejercido sobre la espira por un campo magnético uniforme de 0.25 T dirigido a lo
largo del eje X, cuando la corriente por la bobina es de 0.5 A en la dirección indicada. Determine el sentido de rotación.

\[M = NIAB \sin \theta \]

\[M = (40)(0.5)(0.2)(0.25)(\sin 45^\circ) \]

\[M = 0.18 \text{ Nw.m} \]

Sentido de las manecillas del reloj

7.5 Halle la fuerza ejercida sobre un conductor de longitud 0.3 m que transporta una corriente de 5 A en dirección -Z, donde el campo magnético es \[\vec{B} = 3.5 \times 10^{-1} \hat{i} - 3.5 \times 10^{-3} \hat{j} \] Tesla.

\[\vec{F} = IL \times \vec{B} \]

\[\vec{F} = 1[-0.3 \hat{k} \times (3.5 \times 10^{-3} \hat{i} - 3.5 \times 10^{-3} \hat{k})] \]

\[\vec{F} = -5.25 \times 10^{-3} \hat{i} - 5.25 \times 10^{-3} \hat{k} \text{ nW} \]

7.6 Un protón se mueve en un campo magnético con un ángulo de 30° con respecto al campo. La velocidad es de 10^7 m/s y el campo magnético es de 1.5 T. Calcule (a) el radio del movimiento helicoidal, (b) la distancia de avance por revolución y (c) la frecuencia del movimiento angular.

a) \[R = \frac{m v \sin \theta}{Q B} \]

\[v \perp = v \sin \theta, \ v \parallel = v \cos \theta \]

\[R = \frac{m v \sin \theta}{Q B} = \frac{(1.67 \times 10^{-27}) \left(1 \times 10^{7}\right) (\sin 30^\circ)}{(1.6 \times 10^{-19})(1.5)} = 0.034 \text{ m} \]

b) \[T = \frac{2 \pi m}{Q B} \]
Capítulo 7. Campo Magnético

\[T = \frac{(2\pi)(1.67 \times 10^{-27})}{(1.6 \times 10^{-19})(1.5)} = 4.36 \times 10^{-8} \text{ s} \]

\[x = v_0 T = \left(1 \times 10^7\right)(0.86)(4.36 \times 10^{-8}) = 0.377 \text{ m} \]

\[f = \frac{1}{T} = \frac{1}{4.36 \times 10^{-8}} = 22.9 \times 10^4 \text{ Hz} \]

7.7 (a) Un protón con una energía cinética de 30 MeV se mueve transversalmente respecto a un campo magnético de 1.5 T. Determinar el radio de la trayectoria y el período de revolución. (b) Repita el problema si la energía del protón es de 30 GeV.

a) \[E_k = \frac{1}{2} m v^2 \quad R = \frac{m v}{QB} \Rightarrow v = \frac{QBR}{m} \]

\[E_k = \frac{1}{2} m \left(\frac{QBR}{m}\right)^2 \Rightarrow R = \sqrt{\frac{2E_k m}{QB}} \]

\[R = \sqrt{\left(30 \times 10^9\right)(1.6 \times 10^{-19})(1.67 \times 10^{-27})} \]

\[\left(1.6 \times 10^{-19}\right)(1.5) = 0.528 \text{ m} \]

b) Ahora el problema se trata en forma relativista.

\[E_k = mc^2 - m_0 c^2 \]

\[mc^2 = E_k + m_0 c^2 \]

\[mc^2 = (30 \times 10^9)(1.6 \times 10^{-19}) + (1.67 \times 10^{-27})(3 \times 10^8) \]

\[mc^2 = 4.95 \times 10^{-9} \]
Capítulo 7. Campo Magnético

7.8 En una región del espacio existe un campo magnético \(B \) como se muestra en la figura y un campo eléctrico \(E \). Una carga positiva se mueve perpendicularmente a la dirección del campo magnético. Determine la velocidad \(v \) que debe tener la partícula para que su trayectoria sea recta y la dirección que debe tener el campo eléctrico.

Las fuerzas que actúan sobre la carga son:

- Fuerza magnética \((F_m) \)
- Fuerza electrostática \((F_E) \)

Para que las dos fuerzas se anulen, el campo eléctrico \(E \) debe estar dirigido hacia arriba.

\[
F_E = F_m \\
E Q = Q B v \sin 90 \\
E = B v \\
v = \frac{E}{B}
\]
Capítulo 7. Campo Magnético

7.9 En coordenadas cilíndricas, $B = \frac{2}{r} \hat{\varphi}$. Determine el flujo magnético que cruza la superficie plana definida por $0.5 \leq r \leq 2.5 \text{ m}$ y $0 \leq z \leq 2 \text{ m}$.

$$\Phi = \int_{S} B \cdot dS$$

$$\Phi = \int_{0}^{2.5} \int_{0.5}^{2} \frac{2}{r} \hat{\varphi} \cdot dr \cdot dz \cdot \varphi = 4 \ln \left(\frac{2.5}{0.5} \right) = 6.44 \text{ Weber}$$

7.10 Un campo magnético radial $B = \frac{3}{r} \cos \varphi \hat{r}$. Sale del espacio vacío. Halle el flujo magnético que cruza la superficie definida por $\pi /4 \leq \varphi \leq \pi /4$, $0 \leq z \leq 1 \text{ m}$.

$$\Phi = \int_{S} B \cdot dS$$

$$\Phi = \int_{\pi /4}^{\pi /4} \int_{0}^{1} \left(\frac{3}{r} \cos \varphi \right) \hat{r} \cdot r \hat{r} \cdot dz \cdot \hat{z} = 4.24 \text{ Weber}$$
Capítulo 7. Campo Magnético

1- Una partícula tiene una carga de 4×10^{-9} Coul. Cuando se mueve con una velocidad de 3×10^{4} m/s a 45° por encima del eje Y y en el plano YZ, un campo magnético uniforme ejerce una fuerza según el eje X. Cuando la partícula se mueve con una velocidad v_2 de 2×10^{4} m/s según el eje X, se ejerce una fuerza F_2 de 4×10^{-5} Nw según el eje Y. Cuáles son el módulo y la dirección del campo magnético.

Respuesta: $B = 0.5 \, \text{kT}$

2- En la figura se muestra una bobina rectangular de 20 espiras de 10 cm de ancho y 5 cm de alto. Lleva una corriente de 0.1 A y tiene goznes en un lado. Qué momento obra sobre la bobina si está montada con su plano formando un ángulo de 30° con respecto a la dirección de un campo magnético uniforme de 0.5 Weber/m².

Respuesta: $M = 4.3 \times 10^{-3}$ Nw.m Paralelo al eje Y.

3- Un ion con carga $+3e$ se proyecta a un campo magnético uniforme de 1.5 Weber/m². Viaja a 10^{7} m/s formando un ángulo de 45° con la dirección del campo. Calcule la magnitud y dirección de la fuerza sobre el ion.

Respuesta: 5.09×10^{-12} Nw
Capítulo 7. Campo Magnético

4.- Un segmento conductor recto de 2 m de largo forma un ángulo de 30° con un campo magnético uniforme de 5000 Gauss. Hallar la fuerza que actúa sobre el conductor si por él circula una corriente de 2 A.

Respuesta: 1 Nw

5.- Una región del espacio contiene un campo magnético \(\mathbf{B} = 5 \times 10^4 \mathbf{\hat{z}} \) T, un campo eléctrico \(\mathbf{E} = 2.5 \times 10^4 \mathbf{\hat{i}} \) V/m. Un protón entra a la región con una velocidad \(\mathbf{v} = 2.5 \times 10^4 \mathbf{\hat{i}} \) m/s. Después de tres revoluciones completas: a) Describa el movimiento del protón. b) Hallar la posición.

Respuesta: a) Helicoidal. b) \(z = 37 \) m

6.- La inducción magnética en cierta región es de 2 Weber/m² y su sentido coincide con el eje positivo del eje X. a) Cuál es el flujo magnético que atraviesa la superficie abcd. b) Cuál es el flujo magnético que atraviesa la superficie becf. c) Cuál es el flujo magnético que atraviesa la superficie aefd.

Respuesta: a) \(\phi = 0.24 \) Weber
 b) 0
 c) 0.24 Weber

7.- Hallar la magnitud de la fuerza ejercida sobre una carga eléctrica puntual de 0.2 Coul que tiene una velocidad de \(4 \mathbf{\hat{i}} - 2 \mathbf{\hat{j}} + 3 \mathbf{\hat{k}} \) m/s en el campo. a) \(\mathbf{E} = 20(\mathbf{\hat{i}} + \mathbf{\hat{k}}) \) V/m. b) \(\mathbf{B} = 3 \mathbf{\hat{i}} - 5 \mathbf{\hat{j}} - 6 \mathbf{\hat{k}} \) Weber/m².

Respuesta: a) \(\mathbf{F} = 4\mathbf{\hat{i}} + 4\mathbf{\hat{k}} \) Nw
 b) \(\mathbf{F} = 5.4\mathbf{\hat{i}} + 6.6\mathbf{\hat{j}} - 2.8\mathbf{\hat{k}} \) Nw
8- En un ciclotrón, el radio de la órbita de salida de los protones es de 0.4 m. La frecuencia de ciclotrón es de 10^7 Hz. a) Hallar el campo magnético aplicado. b) Hallar la velocidad de salida de los protones. c) Hallar su energía. d) Hallar el mínimo número de vueltas que debe dar un protón si el máximo voltaje entre las D es de 20000 V.

Respuesta: a) $B = 0.65$ T. b) $v = 2.5 \times 10^7$ m/seg. c) $E_k = 3.26$ MeV. d) $N = 163$

9- Calcule el flujo magnético total que cruza el plano $z = 0$ en coordenadas cilíndricas para $r \leq 5 \times 10^{-2}$ m, si $B = \frac{0.2}{r} \text{sen}^2 \phi \kappa$ T.

Respuesta: $\Phi = 3.14 \times 10^{-2}$ Weber

10- Se tiene un conductor por el cual circula una corriente constante I en el interior de un campo magnético B uniforme y constante como se muestra en la figura. Determine la fuerza magnética sobre el conductor y su dirección.

Respuesta: $F = IB (2L + 2R)$

Hacia abajo
Capítulo 8

Ley de Ampere

ANDRÉ MARIE AMPERE
1775 - 1836 Francia
8.1 Introducción

Hans Christian Oersted descubrió que las corrientes eléctricas producen campos magnéticos, estableciendo una relación muy estrecha entre la electricidad y el magnetismo, llamándosele Electromagnetismo.

Al colocar varios imanes pequeños rodeando un conductor con corriente, se observa que estos imanes se orientan de tal forma que las líneas de inducción forman círculos cerrados alrededor del conductor (Fig. 8.1); esto nos indica que alrededor del conductor con corriente existe un campo magnético que hace desviar los pequeños imanes y también nos da una idea de cómo es la configuración de este campo magnético creado por la corriente.

8.2 Dirección y sentido del campo magnético cerca a un conductor de corriente

Para hallar la dirección y el sentido de un campo magnético producido por una corriente que circula por un conductor, se utiliza la regla de la mano derecha. Se coge el conductor con la mano derecha, con el pulgar apuntando en la dirección de la corriente; entonces la curvatura de los dedos alrededor del conductor indica la dirección y el sentido del campo magnético (Fig. 8.2).
8.3 Ley de Biot-Savart

Para evaluar el campo magnético cerca a un conductor por el cual circula una corriente \(I \), se utiliza la ley de Biot - Savart, llamada así en honor a los físicos que la formularon, Jean Baptiste Biot y Félix Savart alrededor del año 1820. Ellos encontraron la siguiente ley empírica obtenida por experimentación.

\[
\text{dB} = \frac{\mu_0 I \, d\vec{l} \times \vec{r}}{4 \pi r^3}
\]

Donde,

- \(\text{dB} \) : Diferencial de campo magnético en el punto \(P \).
- \(d\vec{l} \) : Diferencial de longitud del conductor en la dirección de la corriente \(I \).
Capítulo 8. Ley de Ampere

\(\mathbf{r} \): Vector de posición que va desde el diferencial de conductor hasta el punto P.

\(\mu_0 \): Coeficiente de Permeabilidad Magnética en el vacío. Su valor es:

\[\mu_0 = 4\pi \times 10^{-7} \text{ Weber/A.m.} \]

8.4 Ley de Ampere

Así como la ley de Gauss relaciona la integral del campo eléctrico a través de una superficie gaussiana con la carga neta encerrada por dicha superficie, la ley de Ampere relaciona la integral del campo magnético a través de una trayectoria cerrada con la corriente neta encerrada por dicha trayectoria (Fig. 8.4)

Fig. 8.4 Trayectoria cerrada alrededor de un conductor con corriente.

\[\oint B \cdot dl = \oint B \cdot dl \cos \theta \quad \therefore \quad dl' = dl \cos \theta \]

\[\oint B \cdot dl = \oint B \cdot dl' \quad \therefore \quad dl' = rd \]

\[B = \frac{\mu_0 I_n}{2\pi r} \]

\[\oint B \cdot dl = \int_0^{2\pi} \frac{\mu_0 I_n}{2\pi r} rd = \frac{\mu_0 I_n}{2\pi} \int_0^{2\pi} d = \frac{\mu_0 I_n}{2\pi} (2\pi - 0) \]
Capítulo 8. Ley de Ampere

\[\int_{\mathcal{C}} \mathbf{B} \cdot d\mathbf{l} = \mu_0 I. \]

(8.2)

Donde,
- \(\mathbf{B} \): Inducción Magnética.
- \(d\mathbf{l} \): Diferencial de longitud de la trayectoria cerrada.
- \(\mu_0 \): Permeabilidad Magnética en el vacío.
- \(I \): Corriente neta encerrada por la trayectoria.

8.5 Corriente de desplazamiento

Consideremos un conductor por el cual circula una corriente de conducción \(I_c \) conectado a las placas de un condensador.

Maxwell propuso que la corriente que se usa en la ley de Ampere está compuesta por la suma de dos corrientes: Una corriente de conducción \(I_c \) y una corriente de desplazamiento \(I_d \). Como la corriente de conducción que llega a las placas hace aumentar el campo eléctrico entre las placas del condensador, Maxwell supuso que la corriente de desplazamiento estaba relacionada con la variación del campo, de la siguiente manera,
Capítulo 8. Ley de Ampere

\[I_c = \frac{dQ}{dt} \quad \therefore \quad Q = \sigma A \]

\[I_c = \frac{d(\sigma A)}{dt} \quad \therefore \quad \sigma = E \varepsilon_o \]

\[I_e = \frac{d(E \varepsilon_o A)}{dt} = \varepsilon_o \frac{d(E A)}{dt} \quad \therefore \quad \Phi = E A \quad \text{(Flujo eléctrico)} \]

\[I_e = \varepsilon_o \frac{d\phi}{dt} = I_d \quad \therefore \quad I_d : \text{Corriente de desplazamiento} \]

En general, la corriente de desplazamiento \(I_d \), viene expresada como,

\[I_d = \varepsilon_o \frac{\partial\Phi}{\partial t} \quad \text{(8.3)} \]

Maxwell generalizó la ecuación de la ley de Ampere de la siguiente manera,

\[\oint \vec{B} \cdot d\vec{l} = \mu_o I_s \quad \therefore \quad I_s = I_c + I_d \]

\[\oint \vec{B} \cdot d\vec{l} = \mu_o (I_c + I_d) \]

\[\oint \vec{B} \cdot d\vec{l} = \mu_o I_c + \mu_o \varepsilon_o \frac{\partial\Phi}{\partial t} \quad \text{(8.4)} \]

8.6 Fuerza magnética entre dos conductores paralelos

Supongamos dos conductores rectos y paralelos de longitud \(L \) separados una distancia \(d \), por los cuales circulan corrientes \(I_a \) e \(I_b \), como se muestra en la figura 8.6.
La corriente la produce un campo magnético B donde se encuentra el conductor por el cual circula una corriente I_b, la fuerza sobre este conductor debido a ese campo magnético es,

$$F = I_b L B$$

pero B, viene dado por,

$$B = \frac{\mu_0 I_b}{2\pi d}$$

reemplazando,

$$F = I_b L \frac{\mu_0 I_b}{2\pi d}$$

por lo tanto, la fuerza que actúa sobre dos conductores rectos y paralelos viene dada por la siguiente expresión,

$$F = \frac{\mu_0 I_b I_b L}{2\pi d}$$ \hspace{1cm} (8.5)

Es fácil demostrar que si las corrientes tienen diferente sentido, en los conductores se ejercen una fuerza de repulsión.

8.7 Campo magnético en un solenoide

Un solenoide es un conductor arrollado sobre una superficie cilíndrica por el cual circula una corriente eléctrica. Observando la figura 8.7, se puede concluir que para puntos exteriores al solenoide, el campo magnético es despreciable y para puntos en el interior el campo magnético se puede considerar constante y uniforme siempre y cuando la longitud del solenoide sea mucho mayor que su diámetro.
Para determinar el valor del campo magnético B en el interior del solenoide, se realiza un corte transversal como se muestra en la figura 8.8, y se aplica la ley de ampere a la trayectoria abcd que encierra cierta cantidad de espiras por las cuales circula una corriente constante I.

\[
\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_n
\]

\[
\int_{a}^{b} \mathbf{B} \cdot d\mathbf{l} + \int_{c}^{d} \mathbf{B} \cdot d\mathbf{l} + \int_{e}^{f} \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_n
\]

\[
\int_{d}^{e} dldl \cos 0 + \int_{e}^{f} dldl \cos 90 + \int_{f}^{g} dldl + \int_{g}^{h} dldl \cos 90 = \mu_0 I_n
\]

\[
\int_{a}^{b} B dl = \mu_0 I_n - N I
\]

N: Número de espiras encerradas por la trayectoria cerrada

$Bh = \mu_0 NI$

$B = \mu_0 \frac{N}{h} I \quad \Rightarrow \quad n = \frac{N}{h} \quad n$: Número de espiras por unidad de longitud.

De manera que el valor del campo magnético en el interior del solenoide se calcula por medio de la siguiente expresión:

\[
B = \mu_0 n I \quad (8.6)
\]

donde μ_0, es la permeabilidad magnética en el aire, n es el número de espiras por unidad de longitud, e I, es la corriente que circula por el solenoide.
8.1 Determine el campo magnético en un punto a una distancia y de un conductor recto e infinito por el cual circula una corriente constante I.

Aplicando la ley de Biot-Savart:

$$dB = \frac{\mu_0 I \, dl \, x \, r}{4\pi r^3}$$

$$dB = \frac{\mu_0 I \, dl \, r \, \sin \theta}{4\pi r^3} = \frac{\mu_0 I \, dl \, \sin \theta}{4\pi r^2}$$

$$\alpha = 180 - \theta \quad \Rightarrow \quad \sin(\pi - \theta) = \sin \theta$$

$$\sin \alpha = \frac{y}{\sqrt{y^2 + x^2}} \quad \therefore \quad \text{dl} = dx$$

$$dB = \frac{\mu_0 I \, y \, dx}{4\pi \sqrt{y^2 + x^2}}$$

$$B = \frac{\mu_0 I y}{4\pi} \int_{-\infty}^{\infty} \frac{dx}{(x^2 + y^2)^{3/2}} = \frac{2\mu_0 I y}{4\pi} \int_{0}^{\infty} \frac{dx}{(x^2 + y^2)^{3/2}}$$

resolviendo la integral se llega a:

$$B = \frac{\mu_0 I}{2\pi y}$$
B.2 En la figura se muestra una espira circular de radio \(R \) que lleva una corriente \(I \). Halle el campo magnético para el punto \(P \) situado sobre el eje de la espira.

Aplicando la ley de Biot-Savart:

\[
\begin{align*}
\text{dB} &= \frac{\mu_0 I}{4\pi} \frac{dx}{r^3} \\
\text{dB} &= \frac{\mu_0 I}{4\pi} \frac{dr \sin 90}{r^3} = \frac{\mu_0 I}{4\pi} \frac{dl}{r^2} \\
\text{dB}_x &= dB \cos \alpha, \quad \text{dB}_y = 0 \quad \text{(Simetría)}
\end{align*}
\]

\[
\begin{align*}
\text{dB}_x &= \frac{\mu_0 I}{4\pi} \frac{dl \cos \alpha}{r^2} \\
\text{dB}_x &= \frac{\mu_0 I}{4\pi} \frac{dl \frac{R}{\sqrt{R^2 + x^2}}}{r^2 \sqrt{R^2 + x^2}} \\
\text{dB}_x &= \frac{\mu_0 I}{4\pi} \frac{R \frac{dl}{\sqrt{R^2 + x^2}}}{(R^2 + x^2)^{3/2}} \\
B_x &= \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} \quad \Rightarrow \quad \hat{B} = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} i
\end{align*}
\]

Si el punto \(P \) se encuentra en el centro de la espira, \(x = 0 \):

\[
B = \frac{\mu_0 I}{2R}
\]
8.3 En la figura se muestra una tira plana de cobre de anchura a y espesor insignificante h que lleva una corriente I. Encontrar el campo magnético a una distancia R del centro de la tira, perpendicularmente a ella.

\[dB = \frac{\mu_0 I dB}{2\pi r} \]

(Campo magnético de un hilo conductor)

\[dB_x = dB \cos \theta \quad B_y = 0 \quad (Simetría) \]

\[B_x = \int dB \cos \theta \quad \Rightarrow \quad \cos \theta = \frac{R}{r} \]

\[dB_x = \frac{\mu_0 I dB}{2\pi r} \left(\frac{R}{r} \right) \]

\[\frac{1}{A} \frac{dl}{dA} \Rightarrow dl = \frac{1}{A} dA \quad \Rightarrow \quad dA = \frac{hdx}{a} \Rightarrow \quad dl = \frac{h}{a} dx \]

\[B_x = \frac{\mu_0 I R}{2\pi a} \int_0^a \frac{dx}{\sqrt{R^2 + x^2}} = \frac{\mu_0 I R}{\pi a} \int_0^1 \frac{dx}{\sqrt{1 + \left(\frac{x}{R} \right)^2}} \]

\[B_x = \frac{\mu_0 I R}{\pi a} \left[\operatorname{tg}^{-1} \left(\frac{x}{R} \right) \right]_0^1 = \frac{\mu_0 I R}{\pi a} \left[\operatorname{tg}^{-1} \left(\frac{a}{2R} \right) \right] \]

\[B_x = \frac{\mu_0 I }{\pi a} \operatorname{tg}^{-1} \left(\frac{a}{2R} \right) \]
Capítulo 8. Ley de Ampere

\[B = \frac{\mu_0 I}{\pi a} \tan^{-1}\left(\frac{a}{2R}\right) \]

8.4 Dos largos hilos rectilíneos y paralelos están separados una distancia 2a. Si transportan intensidades iguales y de sentidos opuestos, calcúlese la inducción magnética en los siguientes puntos: a) En un punto equidistante entre ellos. b) A una distancia a por encima del hilo superior. Si ambos hilos transportan intensidades del mismo sentido, determine la inducción magnética en los siguientes puntos: c) En un punto equidistante entre ellos. d) A una distancia a por encima del hilo superior.

\[a) \quad B = B_1 + B_2 \]

\[B = \frac{\mu_0 I}{2\pi a} + \frac{\mu_0 I}{2\pi a} = \frac{2\mu_0 I}{\pi a} \]

\[b) \quad B_1 = \frac{\mu_0 I}{2\pi a}, \quad B_2 = \frac{\mu_0 I}{2\pi (3a)} \]

\[B = B_2 - B_1 \]

\[B = \frac{\mu_0 I}{2\pi (3a)} - \frac{\mu_0 I}{2\pi a} = -\frac{\mu_0 I}{3\pi a} \]
Capítulo 8. Ley de Ampere

c) \[B_1 = \frac{\mu_0 I}{2\pi a}, \quad B_2 = \frac{\mu_0 I}{2\pi a} \]

\[
B = B_1 - B_2
\]

\[
B = \frac{\mu_0 I}{2\pi a} - \frac{\mu_0 I}{2\pi a} = 0
\]

d) \[B_1 = \frac{\mu_0 I}{2\pi a}, \quad B_2 = \frac{\mu_0 I}{2\pi(3a)} \]

\[
B = -B_1 - B_2
\]

\[
B = -\frac{\mu_0 I}{2\pi a} - \frac{\mu_0 I}{2\pi(3a)} = \frac{2 \mu_0 I}{3 \pi a}
\]

8.5 En la figura se muestra un conductor cilíndrico hueco de radios \(a\) y \(b\) que lleva una corriente \(I\) uniformemente distribuida en su sección transversal. Determine el campo magnético para puntos dentro del cuerpo del conductor \((a < r < b)\).

Aplicando la ley de Ampere:

\[
\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_n
\]

\[
\oint \mathbf{B} \cdot d\mathbf{l} \cos 0^\circ = \mu_0 I_n \Rightarrow B(2\pi r) = \mu_0 I_n
\]

\[
\frac{1}{A} = \frac{l}{A_n} \Rightarrow A = \pi b^2 - \pi a^2
\]

\[
A_n = \pi r^2 - \pi a^2
\]

250
Capítulo 8. Ley de Ampere

\[B(2\pi r) = \mu_0 \frac{1}{\lambda} A_n \Rightarrow B(2\pi r) = \frac{\mu_0 I_n}{A} \left(\pi r^2 - \pi a^2 \right) \]

\[B(2\pi r) = \mu_0 I_n \left(\frac{\pi r^2 - \pi a^2}{\pi b^2 - \pi a^2} \right) \]

\[B = \frac{\mu_0 I_n}{2\pi (b^2 - a^2)} \left(\frac{r^2 - a^2}{r} \right) \]

8.6 Una lámina infinita está colocada como se muestra en la figura vista de perfil y transporta una densidad de corriente superficial \(J_s \) (puntos). \(J_s \) representa la corriente por unidad de longitud medida a lo largo de la lámina. Determinar el campo magnético en puntos cercanos a la lámina.

\[
\oint_{\gamma} \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_n
\]

\[
\oint_{\gamma} \mathbf{B} d\mathbf{l} \cos \theta = \mu_0 I_n
\]

\[
B(2I) = \mu_0 I_n \quad \Rightarrow \quad \frac{1}{Lh} = \frac{I_n}{I_h}
\]

\[
I_n = \frac{1}{L} I \Rightarrow I_n = J_s L
\]
Capítulo 8. Ley de Ampere

8.7 Una corriente I fluye por un alambre semicircular, de radio R como se muestra en la figura. Cuál es el valor del campo magnético en el centro O. Cuál es su dirección.

Aplicando la ley de Biot-Savart para la sección curva:

$$dB = \frac{\mu_0 I}{4\pi} \frac{dl r \sin 90}{r^3} = \frac{\mu_0 I}{4\pi} \frac{dl}{r^2}$$

$$B = \frac{\mu_0 I}{4\pi R^2} \int_0^{\pi R} dl = \frac{\mu_0 I}{4\pi R^2} (\pi R)$$

$$B = \frac{\mu_0 I}{4R} \text{ entrando a la página.}$$

Para la sección recta AB y CD:

$$dB = \frac{\mu_0 I}{4\pi} \frac{dl \times \hat{r}}{r^3} \Rightarrow dB = \frac{\mu_0 I}{4\pi} \frac{dl \sin 0}{r^3} = 0$$

$$dB = \frac{\mu_0 I}{4\pi} \frac{dl \times \hat{r}}{r^3} \Rightarrow dB = \frac{\mu_0 I}{4\pi} \frac{dl \sin 0}{r^3} = 0$$
8.8 Un hilo rectilíneo muy largo transporta una corriente de 1.5 A. Un electrón se desplaza paralelamente al hilo, a una distancia de 10 cm de él, en el mismo sentido de la corriente y con una velocidad de 5×10^6 cm/s. Qué fuerza ejerce sobre el electrón el campo magnético creado por la corriente.

$$ B = \frac{\mu_0 I}{2\pi r} \Rightarrow B = \frac{(4\pi \times 10^{-7})(1.5)}{(2\pi)(0.1)} = 3 \times 10^{-6} \text{T} $$

$$ \vec{F} = Q \vec{v} \times \vec{B} = Q \vec{v} B \sin 90 = QvB $$

$$ F = (1.6 \times 10^{-19})(5 \times 10^4)(3 \times 10^{-6}) = 2.4 \times 10^{-20} \text{ Nw} $$

8.9 Un solenoide de 30 cm de longitud está arrollado con dos capas de hilo. La interior tiene 300 y la externa 250 espiras. La corriente es de 3 A, con el mismo sentido en ambas capas. Cuál es la inducción magnética en un punto próximo al centro del solenoide.

$$ B = \mu_0 n_1 \Rightarrow B = \frac{\mu_0 N_1 I}{l} $$

$$ B = \frac{(4\pi \times 10^{-7})(550)(3)}{0.3} = 6.91 \times 10^{-3} \text{ Weber/m}^2 $$

8.10 Un hilo rectilíneo muy largo transporta corriente de 10 A a lo largo del eje Y como se muestra en la figura. Un campo magnético uniforme, cuya densidad de flujo es 10^6 Weber/m2 está dirigido paralelamente al eje X. Cuál es el campo magnético resultante en los siguientes puntos: a) $x = 0$, $z = 2$ m. b) $x = 2$ m, $z = 0$. c) $x = 0$, $z = -0.5$ m.

$$ B = \mu_0 n_1 \Rightarrow B = \frac{\mu_0 N_1 I}{l} $$
Capítulo 8. Ley de Ampere

\[B = \left(\frac{4\pi \times 10^{-7}}{0.3} \right) (550)(3) = 6.91 \times 10^{-3} \text{ Weber/m}^2 \]

a) \[B = -B_c + B_o \]
\[B = -\frac{\mu_0 I}{2\pi z} + 1 \times 10^{-6} \]
\[B = \left(\frac{4\pi \times 10^{-7}}{2\pi} \right) \frac{10}{2} - 1 \times 10^{-6} = 0 \]

b) \[B = \sqrt{B_c^2 + B_o^2} \]
\[B = \sqrt{(1 \times 10^{-6})^2 + (1 \times 10^{-6})^2} = 1.41 \times 10^{-6} \text{ T} \]

c) \[B = B_c + B_o \]
\[B = \left(\frac{4\pi \times 10^{-7}}{2\pi} \right) \frac{10}{0.5} + 1 \times 10^{-6} = 5 \times 10^{-6} \text{ T} \]
1- En la figura, AB es un alambre de longitud finita que transporta una corriente I. La distancia perpendicular de cualquier punto P a la línea es a. a) Determinar el campo magnético en P debido al alambre. b) Con el anterior resultado determine el campo si el alambre es infinito.

Respuesta: a) \[B = \frac{\mu_0 I}{4\pi a} (\cos \alpha - \cos \alpha_1) \]

b) \[B = \frac{\mu I}{4\pi a} \]

2- Una espira rectangular de anchura a y longitud b está situada a una distancia c de un alambre largo que conduce una corriente I. Determine el flujo magnético total a través de la espira.

Respuesta: \[\Phi = \frac{\mu_0 I b}{2\pi} \ln \left(\frac{a + c}{c} \right) \]

3- En la figura se muestran conductores largos y paralelos entre sí, por cada uno de los cuales circula una intensidad I, en sentidos opuestos. a) Determine el campo magnético en un punto P cualquiera sobre el eje X, b) Para qué valor de x alcanza su valor máximo.

Respuesta:

a) \[B = \frac{\mu_0 I}{\pi} \frac{1}{a^2 + x^2} \]

b) \[x = 0 \]
Capítulo 8. Ley de Ampere

4- Una espira cuadrada de alambre, de lado a lleva una corriente I. Hallar B en el centro de la espira.

Respuesta: $B = \frac{2 \sqrt{2} \mu_0 I}{\pi a}$

5- En un condensador de láminas paralelas circulares de 1 cm de radio separadas 1 mm cuyo dieléctrico es aire, está entrando una carga por la placa superior y saliendo por la placa inferior a un ritmo de 5 A. a) Hallar la variación respecto al tiempo del campo eléctrico situado entre las placas. b) Hallar la corriente de desplazamiento. c) Hallar la densidad de corriente de desplazamiento entre las placas.

Respuesta: a) $\frac{dE}{dt} = 1.8 \times 10^{15}$ Nw/Coul.s
b) $I_d = 5$ A
c) $J = 1.6 \times 10^4$ A/m²

6- Una espira lleva una corriente I como se muestra en la figura. Hallar el campo magnético en el punto P.

Respuesta: $B = \frac{\mu_0 I (r_2 - r_1)}{4 \pi r_1 r_2}$

7- Calcular el campo magnético creado por un electrón que se mueve con una velocidad de 2×10^8 m/s en un punto situado a 4×10^{-8} m de distancia.
 a) En la dirección del movimiento. b) En la dirección que forma un ángulo de 30° con la velocidad. c) En la dirección perpendicular a la velocidad.

Respuesta: a) $B = 0$
b) $B = 1 \times 10^{-3}$ T
c) $B = 2 \times 10^{-3}$ T

8- Un disco de radio R lleva una carga uniforme por unidad de área σ y gira con una velocidad angular ω en torno a su eje. Hallar el campo magnético en el punto P.
9- Por el alambre que se muestra en la figura de radio de 2 cm, circula una corriente de 40 A. Halle el campo magnético en el centro de la espira.

Respuesta: \(B = \frac{\mu_0 \sigma \omega}{2} \left(\frac{R^2 + 2b^2 - 2b}{\sqrt{R^2 + b^2}} \right) \)

10- Un alambre largo transporta una corriente de 20 A a lo largo del eje de un solenoide largo de 300 vueltas/m y con una corriente de 10 A. Determine el campo magnético total localizado a 3 mm del eje del solenoide.

Respuesta: \(B = 4 \times 10^{-3} \text{T} \)
Capítulo 9

Ley de Faraday

MICHEL FARADAY
1791-1867 Inglaterra
9.1 Introducción

En el capítulo anterior se observó que existe una relación íntima entre la electricidad y el magnetismo. En este capítulo se presenta una ley física nueva, la Ley de Faraday.

Antes de que Faraday descubriera la ley de inducción electromagnética, la energía eléctrica utilizable se obtenía a partir de procesos químicos como pilas o baterías. Con esta nueva ley es posible obtener energía eléctrica a partir de procesos mecánicos dando origen a los generadores eléctricos.

Esta ley establece que un flujo magnético variable en una región del espacio, induce un campo eléctrico en esta misma región a lo largo de una trayectoria cerrada.

La ley de Faraday tiene aplicaciones tecnológicas trascendentales, es la responsable de la generación de energía eléctrica y desempeña un papel importante en la mayoría de los artículos eléctricos que utilizamos.

9.2 Ley de la inducción electromagnética

La fuerza electromotriz (fem) inducida entre los terminales de una bobina es igual al valor negativo de la rapidez con que varía el flujo magnético que atraviesa dicha bobina. O sea:

\[V = -N \frac{d\Phi}{dt} \] \((9.1) \)

donde, \(N \) es el número de espiras.

9.3 Ley de Lenz

La ley de Lenz se utiliza para hallar el sentido de la fuerza electromotriz inducida. La corriente inducida aparece en un sentido tal que se opone a la causa que la produce.
9.4 Fuerza electromotriz inducida por movimiento

Supongamos un conductor que se mueve con una velocidad \(\vec{v} \) dentro de un campo magnético uniforme y constante \(\vec{B} \), como se muestra en la figura 9.2. Los portadores de carga del conductor experimentarán una fuerza magnética \(F_m \) a lo largo del conductor, debido a esto los electrones se moverán hacia el extremo inferior y se acumularán ahí, dejando una carga neta positiva en el extremo superior. Esta polarización de cargas generarán un campo eléctrico dentro del conductor en sentido contrario a la fuerza magnética. Llega un momento en que la fuerza magnética \(F_m \) se equilibra con la fuerza eléctrica \(F \), de tal manera que,

\[
F_m = Q \vec{v} \times \vec{B}
\]

\[
F = E \vec{Q}
\]

\[
E \vec{Q} = -Q \vec{v} \times \vec{B}
\]

Fig. 9.2 FEM inducida por movimiento.
Capítulo 9. Ley de Faraday

\[\mathbf{E} = -\mathbf{v} \times \mathbf{B} \]

Se sabe que la diferencia de potencial entre dos puntos es,

\[V_{ab} = -\int_a^b \mathbf{E} \cdot d\mathbf{l} \]

\[V_{ab} = -\int_a^b (\mathbf{v} \times \mathbf{B}) \cdot d\mathbf{l} \]

La fuerza electromotriz inducida en los extremos del conductor viene expresada por la siguiente ecuación.

\[V = \int (\mathbf{v} \times \mathbf{B}) \cdot d\mathbf{l} \quad (9.2) \]

9.5 Campo magnético variable en el tiempo

Cuando un campo magnético varía en el tiempo en una región del espacio, se induce un campo eléctrico no conservativo como se muestra en la figura 9.3. Por lo tanto, según la ley de Faraday, se tiene que,

\[V = -\frac{d\Phi}{dt} \]

Fig. 9.3 Dirección y sentido del campo eléctrico inducido por la variación de un campo magnético.

\[\int \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt} \quad (9.3) \]
9.1 En la figura se muestran dos barras conductoras que se mueven hacia afuera con velocidades \(\dot{v}_1 = -12.5 \text{ i} \) m/s y \(\dot{v}_2 = 8 \text{ i} \) m/s en un campo magnético \(B = 0.35 \text{ j} \) T. Halle el voltaje de b respecto de c.

\[
V_{bc} = \int_a^b (\dot{v}_1 \times B) \, d\vec{l}
\]

\[
V_{bc} = \int_a^b (-12.5 \text{ i} \times 0.35 \text{ j}) (-dz \, \hat{k}) \, dx = \int_a^b (-4.38) \, dx = 2.19 \text{ V}
\]

\[
V_{cd} = \int_c^d (\dot{v}_2 \times B) \, d\vec{l}
\]

\[
V_{cd} = \int_c^d (8 \text{ i} \times 0.35 \text{ j}) \, dz \, \hat{k} = \int_c^d (2.8) \, dx = 1.4 \text{ V}
\]

\[
V_b - V_c = 2.19 - (-1.4) = 3.59 \text{ V}
\]
9.2 La espira conductora circular que aparece en la figura, yace en el plano
$z = 0$, tiene un radio de 0.1 m y una resistencia de 5 Ω. El campo magnético
viene dado por $B = 0.2 \sin 10^3 t \ T$. Determine la corriente por la espira.

$$\Phi = \int_S B \cdot dS$$

$$\Phi = \int (0.2 \sin 10^3 t) \hat{k} \cdot dS$$

$$\Phi = (0.2 \sin 10^3 t) \pi (0.1)^2 = 6.28 \times 10^{-3} \sin 10^3 t \ \text{Weber}$$

$$V = -N \frac{d\Phi}{dt} = -(6.28 \times 10^{-3})(10^3) \cos 10^3 t = -6.28 \cos 10^3 t \ \text{V}$$

$$i = \frac{V}{R} = \frac{6.28 \cos 10^3 t}{5} = -1.25 \cos 10^3 t \ \text{A}$$

Por la ley de Lenz, la corriente inducida en la espira es como se muestra en
la figura.

9.3 Una bobina consta de 200 espiras de alambre enrolladas sobre el
perímetro de una estructura cuadrada cuyo lado mide 18 cm. Cada espira
tiene la misma área, igual a la de la estructura, y la resistencia total de la
bobina es de 2 Ω. Se aplica un campo magnético uniforme y perpendicular
al plano de la bobina. Si el campo magnético cambia linealmente de 0 a 0.5
weber/m2 en un tiempo de 0.8 s. a) Determine la magnitud de la fem inducida
en la bobina. b) Cuál es la magnitud de la corriente inducida en la bobina
debida al cambio del flujo.
Capítulo 9. Ley de Faraday

a) \[A = (0.18)^2 = 0.0324 \text{ m}^2 \]

\[\Phi_1 = 0, \Phi_2 = (0.5)(0.0324) = 0.0162 \text{ Weber} \]

\[V = -N \frac{\Delta \Phi}{\Delta t} = -\frac{(200)(0.0162 - 0)}{(0.8 - 0)} = -4.05 \text{ V} \]

b) \[i = \frac{V}{R} = \frac{4.05}{2} = -2.03 \text{ A} \]

9.4 Una barra conductor de longitud \(L \) gira con una velocidad angular constante alrededor de un pivote fijo en un extremo. Un campo magnético uniforme está dirigido perpendicularmente al plano de rotación, como se muestra en la figura. Determinar la fem inducida entre los extremos de la barra y la polaridad.

\[V = vL \Rightarrow dV = vBdr \]

\[V = \int_0^L vBdr = \int_0^L \omega r B dr = \frac{1}{2} \omega BL^2 \]

9.5 Una barra de masa \(m \) y longitud \(L \) se mueve sobre dos rieles paralelos lisos de resistencia \(R \) en presencia de un campo magnético \(B \) uniforme como se muestra en la figura. Se imprime a la barra una velocidad inicial \(v_0 \) hacia la derecha y después se libera. Determine la velocidad de la barra en función del tiempo y la corriente inducida.

\[-F = ma \]

\[-iBL = m \frac{dv}{dt} \] (1)

\[i = \frac{V}{R} \Rightarrow i = \frac{vLB}{R} \] (2)
Reemplazando (2) en (1),
\[
\begin{align*}
-\frac{\nu L^2 \dot{B}^2}{R} &= m \frac{dv}{dt} \Rightarrow \frac{dv}{\nu} = -\frac{L^2 \dot{B}^2}{mR} \frac{dt}{\nu} \\
\ln\left(\frac{\nu}{\nu_0}\right) &= -\frac{L^2 \dot{B}^2}{mR} t \Rightarrow \left(\frac{\nu}{\nu_0}\right) = e^{\frac{L^2 \dot{B}^2}{mR} t}
\end{align*}
\]

haciendo, \(\tau = \frac{mR}{L^2 \dot{B}^2} \Rightarrow \nu = \nu_0 e^{\frac{L^2 \dot{B}^2}{mR} t} \)

Reemplazando en la expresión (2),
\[i = \frac{L B \nu_0}{R} e^{\frac{L^2 \dot{B}^2}{mR} t} \]

9.6 En una región circular de radio \(R \) existe un campo magnético que varía según \(dB/dt \). Determine el campo eléctrico inducido para: a) \(r < R \), b) \(r > R \).

\[a) \int_E E.dA = -N \frac{d\Phi}{dt} \quad \therefore \quad N = 1 \]

\[E = -\frac{d(BA)}{dt} = -A \frac{dB}{dt} \]

\[2\pi r = -A \frac{dB}{dt} = -\pi r^2 \frac{dB}{dt} \]

\[E = -\frac{1}{2} \left(\frac{dB}{dt} \right)^2 \]

\[b) 2\pi r = -\pi R^2 \frac{dB}{dt} \Rightarrow E = -\frac{1}{2} \left(\frac{dB}{dt} \right) \frac{R^2}{r} \]
9.7 Una barra de metal de 1 m cae libremente en posición horizontal con sus extremos indicando el Este y Oeste. Halle la diferencia de potencial que existe entre sus extremos cuando ha caído 20 m. La componente horizontal del campo magnético terrestre es 1.7×10^{-5} Weber/m2.

$$v^2 = v_0^2 - 2gh \quad \Rightarrow \quad v = \sqrt{2gh} = \sqrt{-2(9.8)(-20)} = -19.8 \quad \frac{\text{m}}{\text{s}}$$

$$V = Blv = (19.8)(1.7 \times 10^{-5}) = 3.36 \times 10^{-5} \quad \text{V}$$

9.8 Una corriente I de 20 A fluye por un alambre recto situado en las cercanías de una espira rectangular, como se muestra en la figura. Si la corriente se suspende y llega a cero en 0.02 s. Halle la fem inducida en la espira y la dirección de la corriente inducida. Los datos son: $h = 10$ cm, $a = 20$ cm, $b = 30$ cm y $N = 1$.

$$V = -N \frac{\Delta \Phi}{\Delta t}$$

$$\Phi = B A$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$d\Phi = B \, dA$$

$$d\Phi = \frac{\mu_0 I}{2\pi r} b \, dr$$

$$\Phi = \int_{h}^{h+1} \frac{\mu_0 I b}{2\pi r} \, dr = \frac{\mu_0 I b}{2\pi} \ln \left(\frac{h+1}{h} \right)$$

$$\Phi = 1.31 \times 10^{-5} \quad \text{Weber}$$

$$V = -\left(\frac{\Delta \Phi}{\Delta t} \right) = -\left(\frac{1.31 \times 10^{-5}}{0.02} - 0 \right)$$

$$V = -6.6 \times 10^{-5} \quad \text{V}$$
9.9 Una bobina rectangular de N vueltas de longitud a y anchura b gira con una frecuencia f en un campo magnético B uniforme, como se muestra en la bobina (principio del generador eléctrico). Determinar la fem inducida en la bobina.

\[V = -N \frac{d\Phi}{dt} \]

\[\Phi = BA \quad \therefore A = ha \]

\[\Phi = BhA \quad \therefore h = b\cos\theta \]

Mirando la bobina desde el lado b:

\[\Phi = B ab\cos\theta \quad \therefore \theta = \omega t \quad \therefore A = ab \]

\[\Phi = BAC\cos\omega t \]

\[V = -N \frac{d\Phi}{dt} = -N \frac{d(BAC\cos\omega t)}{dt} \]

\[V = -NBA(-\omega \sin\omega t) \]

\[V = \omega NBA\sin\omega t \]

9.10 Se coloca una espira rectangular de alambre cerca de un conductor largo y recto en el que la corriente aumenta linealmente con el tiempo de acuerdo con \(i = \alpha t \). Determine la fem inducida en la espira y el sentido de la corriente que se induce en la espira.

\[V = -N \frac{d\Phi}{dt} \]

\[d\Phi = B dA \quad \therefore dA = b dr \]

\[B = \frac{\mu_0 I}{2\pi r} \]

\[d\Phi = \frac{\mu_0 I}{2\pi r} b dr \]
Capítulo 9. Ley de Faraday

\[\Phi = \frac{\mu_0 I b}{2\pi} \int_{a}^{a+d} \frac{dr}{r} = \frac{\mu_0 I b}{2\pi} \ln \left(\frac{a + d}{d} \right) \]

\[V = -\frac{d}{dt} \left(\frac{\mu_0 I b}{2\pi} \ln \left(\frac{a + d}{d} \right) \right) = -\frac{\mu_0 I b}{2\pi} \ln \left(\frac{a + d}{d} \right) \frac{d(a + d)}{dt} \]

\[V = \frac{\mu_0 I b}{2\pi} \ln \left(\frac{a + d}{d} \right) \]

La corriente inducida tiene dirección antihoraria.
Capítulo 9. Ley de Faraday

1- Un área de 0.65 m² en el plano z=0 está encerrada por un filamento conductor. Halle la fem inducida sabiendo que:

\[\mathbf{B} = 0.035 \cos 10^3 t \hat{j} + 0.035 \cos 10^3 t \hat{k} \ T \]

Respuesta: \[V = 22.8 \ \text{Sen} \ 10^3 t \ \text{V}. \]

2- Un conductor de longitud 1 cm es paralelo al eje Z y rota a un radio de 25 cm a 1200 rpm. Determine la fem inducida si el campo magnético radial está dado por: \[\mathbf{B} = 0.5 \hat{r} \ T. \]

Respuesta: \[V = -0.157 \ \text{V}. \]

3- En la figura se presenta un alambre perpendicular a otro alambre largo y recto. El primer alambre se mueve en forma paralela al segundo con una velocidad de 10 m/s en la dirección en que fluye una corriente de 10 A en éste último. Determinar la fem inducida en los extremos del alambre y su polaridad.

Respuesta: \[V = 4.8 \times 10^6 \ \text{V}. \]

4- Un conductor de longitud L y masa m puede deslizarse en un par de guías metálicas verticales conectadas a una resistencia R, como se muestra
Capítulo 9. Ley de Faraday

en la figura. La fricción y la resistencia del conductor y de las guías son despreciables. Hay un campo magnético uniforme y horizontal normal al plano de la página y dirigido hacia afuera. Determine la velocidad límite final de caída bajo la acción gravitatoria.

Respuesta: \(v = \frac{mgR}{B^2L^2} \)

5- El campo magnético B en todos los círculos de trazos de la figura es igual a 0.5 T, entrando a la página y disminuyendo a razón de 0.1 T/s. a) Cuál es la dirección y sentido de las líneas de fuerza del campo eléctrico inducido en la espira. b) Cuál es el valor y dirección del campo en un punto cualquiera de la espira circular de radio 10 cm, c) cuál es la fem inducida de la espira. d) Cuál es la intensidad de la corriente de la espira, si su resistencia es de 2 \(\Omega \). e) Cuál es la diferencia de potencial entre los puntos a y b de la espira. f) Si se corta el anillo en cierto punto y se separan ligeramente los extremos. Cuál será la fem inducida entre dichos extremos.

Respuesta:

a) Sentido horario
b) \(E = 0.005 \text{ V/m (sentido horario)} \)
c) \(V = 3.14 \text{ mV} \)
d) \(i = 1.57 \text{ mA} \)
e) \(V_{ab} = 0 \)
f) \(V = 3.14 \text{ mV} \)

6- Un alambre rígido doblado en un semicírculo de radio R como se muestra en la figura, se hace girar con una amplitud del voltaje inducido y de la corriente inducida cuando la resistencia interna del medidor M es RM y el resto del circuito tiene una resistencia insignificante.
7- En la figura, el flujo magnético que pasa por la espira perpendicularmente al plano de la espira y con sentido entrando a la página, está variando de acuerdo con la siguiente relación: \(\Phi = 6t^2 + 7t + 1 \), donde \(\Phi \) está dado en miliwber y \(t \) en s. a) Cuál es la magnitud de la fem inducida en la espira cuando \(t = 2 \) s. b) Cuál es la dirección de la corriente que pasa por \(R \).

Respuesta: a) \(V = 31 \) mV
b) De izquierda a derecha

8- Hallar la fem inducida en los extremos de una varilla de 1 m de longitud que se desplaza con una velocidad de \(\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k} \) km/s en un campo magnético de \(\mathbf{B} = 2\mathbf{i} + 3\mathbf{j} + 10\mathbf{k} \) T. La varilla se desplaza formando un ángulo de 45° con respecto al eje \(x \).

Respuesta: \(7\sqrt{2} \) V

9- La espira rectangular de la figura se mueve con una velocidad \(\mathbf{v} \) alejándose de un conductor que tiene una corriente \(I \). Hallar la fem inducida en la espira.

Respuesta: \(V = \frac{\mu_0 I abv}{2\pi (r + vt)(r + a + vt)} \)
Capítulo 10

Inductancia

JOSEPH HENRY
1797 - 1878 USA
10.1 Introducción

Una bobina o inductor es un elemento de circuito que almacena energía en el campo magnético en el interior de la bobina por la cual circula una corriente. Así como un condensador se caracteriza por su capacitancia, el inductor se caracteriza por su inductancia, la cual depende de la geometría de su construcción y describe su comportamiento en un circuito.

10.2 Autoinducción

Es el fenómeno que se produce cuando se induce una fem en una bobina si la corriente que circula por esta cambia con el tiempo (Fig. 10.1).

Para hallar la fem autoinducida en la bobina se utiliza la ley de Faraday,

\[
V = -N \frac{d\Phi}{dt}
\]

\[
V = -N \frac{d(N\phi)}{dt}
\]

\[
N\phi = L \cdot i
\]

L: Coeficiente de autoinducción llamada también *Inductancia* de la bobina.
Capítulo 10. Inductancia

\[V = -\frac{d(Li)}{dt} \]

y se llega a la siguiente expresión:

\[V = -L \frac{di}{dt} \] \hspace{1cm} (10.1)

La inductancia \(L \) para un conductor se puede calcular con la expresión:

\[L = \frac{N\Phi}{i} \] \hspace{1cm} (10.2)

Siendo \(N \) el número de espiras para el caso de una bobina, \(\Phi \) es el flujo magnético e \(i \), la corriente que circula por el conductor.

El símbolo eléctrico de la inductancia es:

![Fig. 10.2 Símbolo eléctrico de la inductancia.](image)

La unidad de inductancia es el HENRY (H) que se define como la inductancia de una bobina cuando en ella varía la corriente a razón de un amperio en un segundo produciéndose una fem autoinducida de un voltio.

10.3 Inductancia de una bobina con núcleo de aire

Supongamos una bobina de longitud \(l \), área de sección transversal \(A \) y con \(n \) números de espiras por unidad de longitud como se muestra en la figura 10.3, y en la que además el diámetro de la bobina es muy pequeño con respecto a su longitud.

![Fig. 10.3 Bobina con núcleo de aire](image)
Capítulo 10. Inductancia

\[L = \frac{N \Phi}{i} \]
\[\Phi = BA \]
\[L = \frac{NBA}{i} \]
\[B = \mu_o n i \]
\[L = \frac{N \mu_o n i A}{i} \]
\[L = N \mu_o n A \]
\[N = n l \]

\[L = \mu_o n^2 l A \] (10.3)

10.4 Inductancias en serie

Consideremos un sistema de bobinas conectadas en serie lo suficientemente lejos entre ellas para que no haya interacción de flujos como se muestra en la figura 10.4.

Aplicando la ley de mallas de Kirchhoff,
\[V = V_1 + V_2 + V_3 + \ldots + V_n \]

Fig. 10.4 Un sistema de inductancias en serie se puede reemplazar por una sola inductancia equivalente.
10. Inductancia

La ecuación que representa la inductancia puede ser escrita en la siguiente forma:

\[V = L_1 \frac{di}{dt} + L_2 \frac{di}{dt} + L_3 \frac{di}{dt} + \ldots + L_n \frac{di}{dt} \]

Esta ecuación se puede reemplazar por una sola bobina cuya inductancia equivalente viene dada por la siguiente expresión:

\[L_{eq} = L_1 + L_2 + L_3 + \ldots + L_n \quad (10.4) \]

10.5 Inductancias en paralelo

Ahora consideremos un sistema de bobinas conectadas en paralelo lo suficientemente lejos entre ellas para que no haya una interacción de flujos como se muestra en la figura 10.5.

Fig. 10.5 Un sistema de inductancias en paralelo se puede reemplazar por una sola inductancia equivalente.

Aplicando la ley de nodos de Kirchhoff,

\[i = i_1 + i_2 + i_3 + \ldots + i_n \]

\[\frac{1}{L_1} \int_0^1 V \, dt = \frac{1}{L_2} \int_0^1 V \, dt + \frac{1}{L_3} \int_0^1 V \, dt + \ldots + \frac{1}{L_n} \int_0^1 V \, dt \]

Este sistema se puede reemplazar por una sola bobina cuya inductancia equivalente viene dada por la siguiente expresión.
Capítulo 10. Inductancia

\[
\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \cdots + \frac{1}{L_n}
\] \hspace{1cm} (10.5)

10.6 Circuito RL

Si se tiene el circuito que se muestra en la figura 10.6.

![Diagrama del circuito RL](image)

Fig. 10.6 Circuito RL

Cuando el interruptor se encuentra en la posición 1, y aplicando la ley de mallas de Kirchhoff:

\[
V = iR + \frac{di}{dt}
\]

\[
\frac{di}{dt} + R i + \frac{V}{L} = 0
\]

La solución de la ecuación diferencial anterior es:

\[
i = \frac{V}{R} \left(1 - e^{\frac{t}{R}} \right)
\] \hspace{1cm} (10.6)

La diferencia de potencial en el inductor es,

\[
V_L = L \frac{di}{dt}
\]
Capítulo 10. Inductancia

\[\frac{di}{dt} = \frac{v}{L} e^{-\frac{R}{L}t} \]

\[v_L = ve^{\frac{R}{L}t} \] \hspace{1cm} (10.7)

Las gráficas de corriente y voltaje en el inductor en función del tiempo son las siguientes:

Fig. 10.7 Gráfica de i contra t en el circuito RL.

Fig. 10.8 Gráfica de VL contra t en el circuito RL.

Cuando el interruptor se coloca en la posición 2,

Fig. 10.9 El interruptor se encuentra en la posición 2, es decir, se desconecta de la fuente.

Aplicando la ley de Mallas al circuito anterior,

\[iR + L \frac{di}{dt} = 0 \]

\[\frac{di}{dt} + \frac{R}{L} i = 0 \]
Resolviendo la ecuación diferencial anterior, se llega a:

\[i = \frac{V}{R} e^{-\frac{R}{L} t} \]

(10.8)

La diferencia de potencial en el inductor es,

\[V_L = L \frac{di}{dt} \]

\[\frac{di}{dt} = -\frac{V}{L} e^{-\frac{R}{L} t} \]

\[V_L = -Ve^{-\frac{R}{L} t} \]

(10.9)

Las gráficas de corriente y la magnitud del voltaje en el inductor en función del tiempo son las siguientes:

Fig. 10.10 Gráfica de i contra t en el circuito RL cuando se descarga la bobina.

Fig. 10.11 Gráfica de VL contra t en el circuito RL cuando se descarga la bobina.

El tiempo \(t = \tau = \frac{L}{R} \), llamada constante de tiempo inductivo del circuito RL, y resulta ser el tiempo que tarda la bobina en disminuir su voltaje a un 37% del voltaje máximo.
10.7 Energía almacenada en un campo magnético

La potencia eléctrica en una bobina es,

\[P = V_i i \]

\[V_L = L \frac{di}{dt} \]

\[P = iL \frac{di}{dt} \]

\[dU = L_i di \]

\[dU = L_i di \]

\[U = \int_0^I i \, di = L \int_0^I i \, di \]

Resolviendo la integral se obtiene la energía almacenada en el campo magnético en el interior de una bobina de inductancia \(L \) y por la cual circula una corriente \(I \),

\[U = \frac{1}{2} LI^2 \quad (10.10) \]

10.8 Densidad de energía en un campo magnético

La densidad de energía es la energía almacenada por unidad de volumen, o sea,

\[u = \frac{U}{V} \]

\[u = \frac{\frac{1}{2} LI^2}{A_1} = \frac{LI^2}{2A_1} \]
Capítulo 10. Inductancia

Si en una región del espacio vacío existe un campo magnético B, en dicha región hay una densidad de energía almacenada que se puede expresar por:

$$u = \frac{B^2}{2\mu_0}$$ \hspace{1cm} (10.11)

10.9 Inducción mutua

Es la generación de una fem inducida en un circuito debido a los cambios de flujo de otro circuito cercano al primero.

Cuando dos bobinas se encuentran cercanas entre sí de tal manera que sus flujos magnéticos interactúan como se muestra en la figura 10.12, se dice que están acopladas magnéticamente y por lo tanto se produce en ellas una **Inducción mutua**.

![Fig. 10.12 Bobinas acopladas magnéticamente.](image)
El flujo total en la bobina 1 es,
\[\Phi_1 = \Phi_{11} + \Phi_{12} \]

\[N_1 \frac{d\Phi_{11}}{dt} = N_1 \frac{d\Phi_{11}}{dt} + N_1 \frac{d\Phi_{12}}{dt} \]

\[V_1 = L_1 \frac{di_1}{dt} + d(N_1 \Phi_{12}) \]

\[N_1 \Phi_{12} = M_{12} \quad M_{12} \text{ : Coeficiente de inducción mutua.} \]

\[V_1 = L_1 \frac{di_1}{dt} + d(M_{12} i_2) \]

La fem inducida en la bobina 1 que se encuentra acoplada magnéticamente con la bobina 2 es,

\[V_1 = L_1 \frac{di_1}{dt} + M_{12} \frac{di_2}{dt} \] (10.12)

Haciendo las mismas operaciones para la bobina 2, se llega que la fem inducida para esta bobina es,

\[V_2 = M_{12} \frac{di_1}{dt} + L_2 \frac{di_2}{dt} \] (10.13)

\(M_{12} \) es la inductancia mutua de la bobina 1 debido a la bobina 2
\(M_{21} \) es la inductancia mutua de la bobina 2 debido a la bobina 1

Si las bobinas tienen la misma área de sección transversal y la misma longitud se tiene,

\[M_{12} = \frac{N_1 \Phi_{12}}{i_2} \quad \Phi_{12} = B_2 A \]

\[M_{21} = \frac{N_1 B_2 A}{i_2} \quad B_2 = \mu n_2 i_2 \]
Capítulo 10. Inductancia

\[M_{12} = N_1 \mu n_2 A \quad \therefore \quad N_1 = n_1 l \]

\[M_{12} = \mu n_1 n_2 A \]

\[M_{21} = \frac{N_2 \Phi_{21}}{i_1} \quad \therefore \quad \Phi_{21} = B_1 / A \]

\[M_{21} = \frac{N_2 B_1 A}{i_1} \quad \therefore \quad B_1 = \mu n_1 i_1 \]

\[M_{21} = N_2 \mu n_1 A \quad \therefore \quad N_2 = n_2 l \]

\[M_{21} = \mu n_1 n_2 A \]

\[M_{12} = M_{21} = M \]

\[L_1 = \mu n_1^2 lA \]

\[L_2 = \mu n_2^2 lA \]

\[L_1 L_2 = (\mu n_1^2 lA) (\mu n_2^2 lA) \]

\[L_1 L_2 = \mu_1 n_1^2 n_2^2 l^2 A^2 \]

\[L_1 L_2 = M_{12}^2 = M_{21}^2 = M^2 \]

Bajo estas condiciones se puede obtener la inductancia mutua con la siguiente expresión:

\[M = \sqrt{L_1 L_2} \quad (10.14) \]

10.10 Transformador

Es un dispositivo compuesto básicamente por dos bobinas acopladas magnéticamente por medio de un núcleo como se muestra en la figura 10.13.
La bobina por donde entra la energía se le llama primario y la bobina por donde sale la energía se le llama secundario.

![Diagrama del transformador](image)

Fig. 10.13 El transformador

Utilizando las ecuaciones de circuitos acoplados (10.12) y (10.13):

\[
V_1 = L_1 \frac{di_1}{dt} + M_{12} \frac{di_2}{dt}
\]

\[
V_2 = L_2 \frac{di_1}{dt} + M_{21} \frac{di_1}{dt}
\]

\[
M_{12} = M_{21} = M
\]

\[
V_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} \quad (1)
\]

\[
V_2 = L_2 \frac{di_2}{dt} + M \frac{di_1}{dt} \quad (2)
\]

De la ecuación (1),

\[
\frac{di_2}{dt} = \frac{V_1 - L_1 \frac{di_1}{dt}}{M}
\]
Capítulo 10. Inductancia

Reemplazando en la ecuación (2),

\[V_2 = L_2 \left(\frac{V_1 - L_1 \frac{di_1}{dt}}{M} \right) + M \frac{di_1}{dt} \]

\[V_2 = \frac{L_2 V_1}{M} - \frac{L_1 L_2}{M} \frac{di_1}{dt} + M \frac{di_1}{dt} \]

\[V_2 = \frac{L_2 V_1}{M} - \frac{M^2}{M} \frac{di_1}{dt} + M \frac{di_1}{dt} \]

\[\frac{V_1}{V_2} = \frac{L_2}{\sqrt{L_1 L_2}} = \sqrt{\frac{L_2}{L_1}} = \sqrt{\frac{\mu n_2^2}{\mu n_1^2}} = \frac{N_2}{N_1} \]

La razón de transformación del transformador es:

\[\frac{V_1}{V_2} = \frac{N_1}{N_2} \quad (10.15) \]

La potencia de entrada en el transformador es aproximadamente igual a la potencia de salida, por lo tanto,

\[P_1 = P_2 \]

\[V_1 i_1 = V_2 i_2 \]

\[\frac{V_1}{V_2} = \frac{i_2}{i_1} \]

De manera que,

\[\frac{i_1}{i_2} = \frac{N_2}{N_1} \quad (10.16) \]
10.1 Determine la inductancia de un toroide de N espiras de sección transversal rectangular como se muestra en la figura.

\[
L = \frac{N \Phi}{I} \quad (1)
\]

\[
\Phi = \oint B \cdot dS = \int B \cdot dS \quad (2)
\]

Para hallar B se aplica la ley de Ampere a la trayectoria circular punteada,

\[
\oint B \cdot dl = \mu_0 I_n \quad , \quad I_n = N_i
\]

\[
B 2\pi r = \mu_0 N_i \quad \Rightarrow \quad B = \frac{\mu_0 N_i}{2\pi r}
\]

Reemplazando en la expresión (2),

\[
\Phi = \int \frac{\mu_0 N_i}{2\pi r} dS \quad \therefore dS = h \, dr
\]

\[
\Phi = \int \frac{\mu_0 N_i}{2\pi} h \, dr = \frac{\mu_0 N_i h}{2\pi} \int_0^b \frac{d}{r} \, dr
\]

\[
\Phi = \frac{\mu_0 N_i h}{2\pi} \ln \left(\frac{b}{a} \right)
\]

Reemplazando en la expresión (1),

\[
L = \frac{N \mu_0 N_i h}{2\pi} \ln \left(\frac{b}{a} \right) \quad \Rightarrow \quad L = \frac{\mu_0 N^2 h}{2\pi} \ln \left(\frac{b}{a} \right)
\]
10.2 Una inductancia de 3 H se conecta en serie con una resistencia de 10 Ω y se aplica repentinamente una fem de 3 voltios al circuito. Para un tiempo igual a la constante de tiempo después de cerrar el interruptor. Determine: a) Con qué rapidez está entregando energía la batería. b) Con qué rapidez se desarrolla energía calórica en la resistencia. c) Con qué rapidez se está almacenando energía en el campo magnético.

\[i = \frac{V}{R} \left(1 - e^{-\frac{t}{\tau}}\right) \quad \text{para} \quad \tau = \frac{L}{R} \]

\[i = \frac{V}{R} \left(1 - e^{-\frac{t}{\tau}}\right) - \frac{3}{10} \left(1 - e^{-\frac{t}{\tau}}\right) = 0.189 \text{ A} \]

\[\frac{di}{dt} = \frac{V}{R} e^{-\frac{t}{\tau}} \left(\frac{1}{L} - \frac{1}{R}\right) = \frac{V}{L} e^{-\frac{t}{\tau}} \]

Para \(t = \tau = \frac{L}{R} \)

\[\frac{di}{dt} = \frac{V}{L} e^{-\frac{t}{\tau}} = \frac{2}{3} \left(0.368 \right) = 0.368 \text{ A/s} \]

a) \(P_f = Vi = \left(3 \times 0.189\right) = 0.567 \text{ Watts} \)

b) \(P_R = i^2R = \left(0.189\right)^2 \left(10\right) = 0.357 \text{ Watts} \)

c) \(P_L = V_Li = L \frac{di}{dt} = \left(3 \times 0.368 \times 0.189\right) = 0.21 \text{ Watts} \)

10.3 Una bobina toroidal delgada tiene 15 cm de radio medio y 4 cm2 de área de sección transversal. Su devanado primario es de 75 vueltas/cm, el secundario tiene 40 vueltas/cm. Determine el valor de la inductancia mutua. Suponga que el secundario se enrolla directamente sobre el devanado primario.

\[M = \frac{N_1 \Phi_{21}}{I_i} \quad \therefore \quad \Phi_{21} = B_i A \]
Capítulo 10. Inductancia

\[B_i = \frac{\mu_0 N_1 i_1}{2\pi r} \Rightarrow M = \frac{N_2}{i_i} \frac{\mu_0 N_1 i_1 A}{2\pi r} = \frac{\mu_0 N_1 N_2 A}{2\pi r} \]

\[N_i = n_i l \Rightarrow N_1 = n_1 2\pi r, \quad N_2 = n_2 2\pi r \]

\[M = \frac{\mu_0 n_1 n_2 4\pi^2 r^2 A}{2\pi r} = 2\mu_0 \pi r n_1 n_2 A \]

\[M = (2\pi \times 10^{-7})(0.15)\left(\frac{75}{0.01}\right)\left(\frac{40}{0.01}\right)\left(4 \times 10^{-4}\right) = 14 \text{ mH} \]

10.4 Un solenoide de longitud 0.5 m con 500 espiras y el área de su sección transversal es \(3 \times 10^{-3}\) m². Una segunda bobina que tiene 8 espiras está devanada alrededor del centro de la primera. Determine la inductancia mutua del sistema.

\(l = 0.5 \text{ m}, \quad N_1 = 500 \text{ espiras}, \quad A = 3 \times 10^{-3} \text{ m}^2 \)

\(N_2 = 8 \text{ espiras} \)

\[M = \frac{N_2 \Phi_{1i}}{i_i}, \quad \Phi_{2i} = B_i A \Rightarrow B_i = \frac{\mu_0 N_1 i_1}{l} \]

\[\Phi_{2i} = \frac{\mu_0 N_1 i_1 A}{l} \]

\[M = \frac{\mu_0 N_1 i_1 A N_2}{l_i l_i} = \frac{\mu_0 N_1 N_2 A}{l} \]

\[M = \frac{(4\pi \times 10^{-7})(500)(8)(3 \times 10^{-3})}{0.5} = 3 \times 10^{-5} \text{ H} \]

10.5 La corriente que circula por una bobina de inductancia desconocida es de 3.5 A, cuando se mantiene a través de una diferencia de potencial de 2.8 voltios. Cuando se conecta en un circuito, con ayuda de un osciloscopio
Capítulo 10. Inductancia

Se observa que la diferencia de potencial a través de una resistencia de 1 Ω colocada en serie con la bobina se eleva a 90% de su valor máximo en 4.2 \times 10^{-3} s. Cuál es la inductancia de la bobina.

\[R_B = \frac{V}{i} = \frac{2.8}{3.5} = 0.8 \ \Omega \]

\[i = \frac{V}{R_1} \left(1 - e^{\frac{R_{i+1}}{L}} \right) \]

Para hallar \(V_L \):

\[iR_E = \frac{V_{R_E}}{R_1} \left(1 - e^{\frac{R_{i+1}}{L}} \right) \]

\[V_E = \frac{V_{R_E}}{R_1} \left(1 - e^{\frac{R_{i+1}}{L}} \right) \]

\[0.9 = 1 - e^{\frac{R_{i+1}}{L}} \Rightarrow e^{\frac{R_{i+1}}{L}} = 0.1 \Rightarrow L = \frac{R_{i+1}}{0.1} \]

\[L = \left(\frac{1.8 \times 4.2 \times 10^{-3}}{2.3} \right) = 3.3 \times 10^{-3} \ \text{H} \]

10.6 En la figura se muestra un alambre recto que circula una corriente \(I \), y una espira cuadrada de alambre, con uno de sus lados paralelo al alambre recto y a una distancia \(d \) de él. Calcule la inductancia mutua del sistema.

\[M = \frac{N \Phi_{2\text{m}}}{i} \]

\[d\Phi_{2\text{m}} = B dA = \frac{B_0 I}{2\pi} a \, dr \]
Capítulo 10. Inductancia

\[\Phi_{23} = \frac{\mu_0 i_a}{2\pi} \int_a^{b} \frac{r \, dr}{r} = \frac{\mu_0 i_a}{2\pi} \ln \left(\frac{d + a}{d} \right) \]

\[M = \frac{N u_b i_a}{2\pi i} \ln \left(\frac{d + a}{d} \right) = \frac{\mu_0 a}{2\pi} \ln \left(\frac{1 + a}{d} \right) \]

10.7 a) Cuales son las corrientes a través de cada elemento del circuito de la figura inmediatamente después de haber cerrado el interruptor. b) Cuales son las corrientes después de un tiempo largo.

a) Para \(t = 0 \):

\[i_i = i_L = 0 \]

\[i_2 = \frac{12}{7} = 1.7 \text{ A} \]

\[i_3 = i_4 = 1.7 \text{ A} \]

b) Para \(t \to \infty \)

\[R_{eq} = \frac{(6)(4)}{6 + 4} = \frac{24}{10} = 2.4 \text{ } \Omega \]

\[R_{eq} = 2.4 + 3 = 5.4 \text{ } \Omega \]

\[i = \frac{12}{5.4} = 2.2 \text{ A} \]

\[i_3 = i = 2.2 \text{ A} \]

\[V_{ab} = (2.2)(2.4) = 5.3 \text{ V} \]

\[i_5 = \frac{V_{ab}}{4} = \frac{5.3}{4} = 1.3 \text{ A} \]
10.8. El interruptor del circuito que se muestra en la figura se ha cerrado hace un tiempo muy largo. a) Cuál es la corriente en cada elemento del circuito. b) Cuando se abre el interruptor, la corriente en el inductor baja en un factor 3, en 5 milisegundos. Cuál es el valor de L. c) Cuál es la corriente por cada elemento a los 10 milisegundos.

![Circuito ejemplo](image_url)

a) $i_a = \frac{2}{3}$ A

b)

$$i = \frac{V}{R}e^{-\frac{Rt}{L}}$$

$$\frac{1}{3} = \frac{V}{R}e^{-\frac{Rt}{L}} \Rightarrow \frac{1}{3} = e^{-\frac{Rt}{L}}$$

$$L = \frac{Rt}{1.0986} = \frac{4 \times 5 \times 10^{-3}}{1.0986} = 18.2 \text{ mH}$$

C) $i_3 = 0$
10.9 La corriente en un inductor de 10 H varía con el tiempo según: \(i = 2t^2 - 3t \), donde \(i \) está en amperios y \(t \) en segundos. a) Calcule la magnitud de la fem inducida en \(t = 0 \) y \(t = 3 \) s. b) Para que valor de \(t \) la FEM inducida será cero.

a) \[V_L = L \frac{di}{dt} \Rightarrow V_L = 10(4t - 3) \]

Para \(t = 0 \) \(\Rightarrow V_L = -30 \) V

Para \(t = 3 \) s \(\Rightarrow V_L = 10[4(3) - 3] = 90 \) V

b) \[V_L = 10(4t - 3) \] si \(V_L = 0 \)

\[0 = (4t - 3) \Rightarrow t = \frac{3}{4} \text{ s} \]

10.10 Calcule la densidad de energía magnética almacenada cerca del centro de un solenoide devanado en forma estrecha con 1200 espiras/m, cuando la corriente en el solenoide es de 3 A.

\[u = \frac{B^2}{2\mu_0} \Rightarrow B = \mu_0 nI \]

\[B = (4\pi \times 10^{-7})(1200)(3) = 0.00452 \text{ T} \]

\[u = \frac{(0.00452)^2}{2(4\pi \times 10^{-7})} = 8.13 \text{ Joules/m}^3 \]
1.- Dos alambres paralelos de radios a cuyos centros están separados una distancia d llevan corrientes iguales en sentidos contrarios. Sin tomar en cuenta el flujo que existe entre los alambres, determine la inductancia para un tramo de longitud l para ese par de alambres.

Respuesta: \(L = \frac{\mu_0 I}{\pi} \ln\left(\frac{d-a}{a}\right) \)

2.- Una bobina con una inductancia de 2 H y una resistencia de 10 \(\Omega \) se conecta de pronto con una batería de 100 V. Después de 0.1 s de hacerse la conexión determine: a) La rapidez con que se está almacenando energía en el campo magnético. b) La rapidez con que se disipa energía en forma de calor en la resistencia. c) La rapidez con que está entregando energía la batería.

Respuesta: a) 238.6 Watts b) 154.8 Watts c) 393.5 Watts

3.- Una espira circular de alambre de radio R lleva una corriente I. Cuál es la densidad de energía en el centro de la espira.

Respuesta: \(U = \frac{\mu_0 I^2}{8R} \)

4.- Dos bobinas vecinas A y B tienen 300 y 600 espiras, respectivamente. Una corriente de 1.5 amp en A origina que 1.2 \(\times 10^{-4} \) weber pasen a través de A y 0.9 \(\times 10^{-4} \) weber a través de B. Determinar a) la inductancia de A, b) la inductancia mutua de A y B, c) la fem inducida en B cuando la corriente en A se interrumpe en 0.2 s.

Respuesta: a) 24 mH b) 36 mH c) 0.27 V

5.- a) Determine la constante de tiempo del circuito que se muestra en la figura. b) Qué cantidad de energía hay almacenada en el inductor de 30 mH
Capítulo 10. Inductancia

cuando la energía total almacenada en el circuito sea el 50% del valor máximo posible. (Desprecie la inductancia mutua entre las bobinas)

Respuesta:
- a) 8.75 milisegundos
- b) $U = 1.17 \text{ Joules}$

6- La batería del circuito que se muestra en la figura tiene una fem de 24 V.
a) Qué corriente estará entregando la batería 1 milisegundo después de que el interruptor se haya cerrado.
b) Determine la diferencia de potencial a través de la resistencia de 5 Ω después de 3 milisegundos de que el interruptor se cierre. Desprecie la inductancia mutua entre las bobinas.

Respuesta:
- a) 2.36 Amp
- b) 7.76 V

7- En el circuito que se muestra en la figura, las dos bobinas están acopladas magnéticamente. Halle la inductancia equivalente.

Respuesta:
$$L_{eq} = L_1 + L_2 \pm 2M$$

8- En el circuito que se muestra en la figura. Halle los valores de i_1 y i_2.

| V = 100 V |
| R_1 = 10 Ω |
| R_2 = 20 Ω |
| R_3 = 30 Ω |
| L = 2 H |
Capítulo 10. Inductancia

a) Inmediatamente después de haber sido cerrado el interruptor S.
b) Para un tiempo largo después.
c) Inmediatamente después de que es abierto de nuevo el interruptor S.
d) Un tiempo largo después.

Respuesta:
- a) \(i_1 = i_2 = 3.33 \text{ A} \)
- b) \(i_1 = 4.55 \text{ A}, i_2 = 2.73 \text{ A} \)
- c) \(i_1 = 0, i_2 = 1.82 \text{ A} \)
- d) \(i_1 = i_2 = 0 \)

9- Un cable coaxial largo como se muestra en la figura, consta de dos conductores cilíndricos concéntricos con radios \(a \) y \(b \), donde \(b >> a \). Su conductor central conduce una corriente estacionaria \(I \), y el conductor exterior proporciona la trayectoria de retorno.

a) Determine la energía total almacenada en el campo magnético para una longitud \(l \) del cable.

Respuesta:
- a) \(U = \frac{\mu_0 I^2}{4\pi} \frac{b}{a} \ln \frac{b}{a} \)

b) \(L = \frac{\mu_0 I}{2\pi} \frac{b}{a} \ln \frac{b}{a} \)

10- Un alambre largo y recto de radio \(a \), lleva una corriente total \(I \) distribuida uniformemente en su sección transversal. Determine la energía total magnética por unidad de longitud almacenada en el alambre y demuestre que es independiente del radio.

Respuesta:
- \(U = \frac{\mu_0 I^2}{1 - 16\pi} \)
Capítulo 11
Propiedades Magnéticas de la Materia

HEINRICH RUDOLF HERTZ
1857 - 1894 Alemania
11.1 Introducción

El hecho de que un cuerpo tenga propiedades magnéticas se debe a que sus átomos poseen momentos de dipolos magnéticos. Estos dipolos magnéticos se deben a trayectorias de corriente asociadas al movimiento de los electrones dentro del átomo y al hecho de que el spin del electrón también tiene un momento de dipolo magnético.

11.2 Corriente de magnetización

En la figura 11.1, se muestra la sección transversal de un material magnético; cada cuadro representa el volumen que ocupa un sólo átomo. Las flechas alrededor de la periferia de cada cuadro indican la circulación de la corriente electrónica. Las corrientes a lo largo de cada frontera interna van en sentido contrario, por lo que se cancelan mutuamente. Pero las corrientes atómicas en la superficie del material no se cancelan produciéndose una corriente total llamada Corriente de magnetización superficial neta I_m, siendo esta corriente la fuente del magnetismo del material.

![Fig. 11.1](image-url)
El momento dipolar magnético total del material está dado por:

\[\mathbf{P}_m = \mathbf{I}_m \mathbf{A} \]

(11.1)

Donde \(\mathbf{A} \) es el área de la sección transversal del material.

11.3 Vector de magnetización

El campo magnético de un material magnético puede expresarse en términos de un vector de Magnetización \(\mathbf{M} \), definido como el momento de dipolo magnético por unidad de volumen del material.

\[\mathbf{M} = \frac{d\mathbf{P}_m}{dV} \]

(11.2)

La dirección del vector \(\mathbf{M} \) es la que se muestra en la figura 1b, perpendicular al área de la sección transversal y orientado de acuerdo con la regla de la mano derecha.

\[
\begin{align*}
\frac{d\mathbf{P}_m}{dV} &= N dI_m A \\
\int dI_m &= M dl \\
I_m &= \int_c M dl
\end{align*}
\]

En forma vectorial,

\[\mathbf{I}_m = \int_c \mathbf{M} \, d\mathbf{l} \]

(11.3)
11.4 Ley de Ampere en materiales magnéticos

Cuando se tiene un cilindro magnético dentro de un solenoide largo que lleva una corriente \(I \), esta produce un campo magnético dentro del cilindro que lo magnetiza y da lugar en él una corriente superficial de magnetización en la misma dirección que \(I \), como se muestra en la figura 11.2.

![Fig. 11.2 Cilindro magnético dentro de un solenoide](image)

Aplicando la ley de Ampere a lo largo de la trayectoria cerrada PQRS, se tiene,

\[
\int \vec{B} \cdot d\vec{l} = \mu_0 (N I_c + I_m)
\]

donde,

- \(N \) : Número de espiras de la bobina.
- \(I_c \) : Corriente de conducción, la que circula por la bobina (Fig. 11.2).
- \(I_m \) : Corriente de magnetización que circula por el núcleo.

\[
\int \vec{B} \cdot d\vec{l} = \mu_0 (N I_c + I_m)
\]

\[
\int \vec{B} \cdot d\vec{l} = \mu_0 \left(N I_c + \oint \vec{M} \cdot d\vec{l} \right)
\]

\[
\int \left(\vec{B} - \mu_0 \vec{M} \right) \cdot d\vec{l} = \mu_0 N I_c
\]
Capítulo 11. Propiedades Magnéticas de la Materia

Haciendo,

$$\vec{H} = \frac{\vec{B}}{\mu_o} - \vec{M} \quad (11.3)$$

$$\int \vec{H} \cdot d\vec{l} = NI \quad (11.4)$$

Donde,

\vec{H}: Intensidad magnética $[A/m]$

11.5 Susceptibilidad magnética

En general para muchos materiales magnéticos, la magnetización es directamente proporcional a la intensidad magnética (H) siempre y cuando sus valores no sean excesivos. O sea:

$$\vec{M} = \chi_m \vec{H} \quad (11.5)$$

Donde,

χ_m: Susceptibilidad magnética del material.

Los materiales que cumplen con la anterior relación se les llama Materiales magnéticos lineales.

Reemplazando la expresión (11.3) en la (11.5):

$$H = \frac{B}{\mu_o} - M$$

$$H = \frac{B}{\mu_o} - \chi_m H$$

$$H + \chi_m H = \frac{B}{\mu_o}$$
Se tienen las siguientes relaciones:

\[B = \mu_0 (1 + \chi_m) H \]

\[\mu = \mu_0 (1 + \chi_m) \]

\[\mu_r = 1 + \chi_m \]

La susceptibilidad magnética de algunos materiales magnéticos a temperatura ambiente es:

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>(\chi_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminio</td>
<td>2.3 \times 10^{-5}</td>
</tr>
<tr>
<td>Bismuto</td>
<td>-1.66 \times 10^{-5}</td>
</tr>
<tr>
<td>Cobre</td>
<td>-0.98 \times 10^{-5}</td>
</tr>
<tr>
<td>Oro</td>
<td>-3.6 \times 10^{-5}</td>
</tr>
<tr>
<td>Plomo</td>
<td>-1.7 \times 10^{-5}</td>
</tr>
<tr>
<td>Magnesio</td>
<td>1.2 \times 10^{-5}</td>
</tr>
<tr>
<td>Plata</td>
<td>-2.6 \times 10^{-5}</td>
</tr>
<tr>
<td>Sodio</td>
<td>-0.24 \times 10^{-5}</td>
</tr>
<tr>
<td>Tungsteno</td>
<td>6.8 \times 10^{-5}</td>
</tr>
<tr>
<td>Agua</td>
<td>-0.88 \times 10^{-5}</td>
</tr>
<tr>
<td>Hidrógeno</td>
<td>-9.9 \times 10^{-5}</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>2.1 \times 10^{-6}</td>
</tr>
<tr>
<td>Hierro dulce</td>
<td>5000</td>
</tr>
</tbody>
</table>

11.6 Materiales ferromagnéticos

Los materiales ferromagnéticos como el hierro, níquel y cobalto son aquellos que presentan en sus dipolos atómicos magnéticos interacciones intensas haciendo que estos dipolos atómicos se puedan alinear sin necesidad de aplicar un campo magnético externo intenso. En otra forma, se puede decir que los materiales ferromagnéticos son aquellos que presentan susceptibilidades magnéticas muy grandes y positivas, y la permeabilidad absoluta es mucho mayor que la permeabilidad en el vacío.
Capítulo 11. Propiedades Magnéticas de la Materia

Cuando la temperatura alcanza o excede el valor de una temperatura crítica, llamada temperatura Curie, el material ferromagnético pierde su magnetización espontánea y se convierte en un material paramagnético.

La temperatura Curie para algunos materiales ferromagnéticos es:

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Tc [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierro</td>
<td>1043</td>
</tr>
<tr>
<td>Cobalto</td>
<td>1394</td>
</tr>
<tr>
<td>Níquel</td>
<td>631</td>
</tr>
<tr>
<td>Gadolinio</td>
<td>317</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>893</td>
</tr>
</tbody>
</table>

En contraste con los materiales paramagnéticos, la magnetización de los materiales ferromagnéticos no es una función lineal del campo magnético aplicado; la susceptibilidad de estos materiales varía según la forma en que cambia el campo aplicado.

11.7 Materiales paramagnéticos

Son aquellos materiales en los cuales sus momentos de dipolos magnéticos atómicos tienden a alinearse paralelamente a un campo magnético externo. La susceptibilidad magnética de estos materiales es positiva pero muy pequeña \(0 < \chi_m < 1\) y la permeabilidad absoluta es mayor que la permeabilidad en el vacío.

La influencia orientadora de un campo magnético sobre las moléculas de una sustancia paramagnética queda disminuida por el efecto desorientador de la agitación térmica, tanto mayor cuantos más elevada sea la temperatura. Por tanto, la susceptibilidad magnética de una sustancia paramagnética disminuye al aumentar la temperatura. Para muchas sustancias, la variación de la temperatura queda representada satisfactoriamente por la siguiente expresión:

\[
\chi_m = \frac{C}{T}
\]

\[(11.6)\]
Capítulo 11. Propiedades Magnéticas de la Materia

Donde C es llamada constante de Curie, que depende del número de átomos por unidad volumen, de la constante de Boltzman y del momento magnético por átomo; T es la temperatura absoluta. Algunos materiales paramagnéticos son: aluminio, magnesio, titanio, wolframio, aire.

En campos magnéticos bajos, los materiales paramagnéticos exhiben una magnetización \mathbf{M} en la misma dirección del campo externo \mathbf{B}, y cuya magnitud se describe por la Ley de Curie

$$\mathbf{M} = C \frac{\mathbf{B}}{T}$$ \hspace{1cm} (11.7)

donde T, es la temperatura absoluta y C es la constante de Curie.

11.8 Materiales Diamagnéticos

Son aquellos materiales en los cuales sus dipolos magnéticos atómicos se alinean en la dirección contraria a un campo magnético externo aplicado al material; debido a esto es que la susceptibilidad de estos materiales es negativa. Además, se encuentra que un material diamagnético es repelido cuando se coloca cerca del polo de un imán (en contraste con una muestra paramagnética, la cual es atraída).

Algunos materiales como el bismuto, cobre y oro entre otros, son materiales diamagnéticos. Las susceptibilidades de las sustancias diamagnéticas son independientes de la temperatura.

11.9 Ciclo de Histeresis

En la figura 11.3(a), se muestra la gráfica de la magnetización M contra la intensidad magnética H, de un material ferromagnético utilizado como núcleo de una bobina por la cual circula una corriente.
Capítulo 11. Propiedades Magnéticas de la Materia

La gráfica anterior se conoce como Ciclo de Histéresis, su forma y tamaño dependen de las propiedades del material y de la intensidad del campo magnético aplicado.

El ciclo de Histéresis se puede representar también por medio de una gráfica de B contra H como se observa en la figura 11.3(b). Los materiales magnéticamente duros como los imanes permanentes son aquellos que tienen un ciclo de Histéresis ancho (área encerrada por la curva es grande); y los materiales magnéticamente blandos como los núcleos de los transformadores tienen un ciclo de Histéresis angosto (área encerrada por la curva es pequeña). El área encerrada por la curva representa la energía disipada durante el ciclo de magnetización. El campo coercitivo H_c, es el campo magnético necesario para que la magnetización del material sea cero. La magnetización remanente M_r, es la magnetización que aparece en el material a pesar de que el campo magnético en él sea cero.
11.1 Un toroide (anillo de Rowland) que tiene 500 vueltas de hilo y una circunferencia media de 50 cm de longitud, transporta una corriente de 0.3 A. La permeabilidad relativa del núcleo es 600. a) Cuál es la densidad de flujo en el núcleo. b) Cuál es la intensidad magnética.

a) \[B = \frac{\mu NI}{l} \]

\[B = \frac{\mu_r \mu_0 NI}{l} \]

\[B = \frac{(600)(4\pi 10^{-7})(500)(0.3)}{0.5} = 0.226 \text{ Weber/m}^2 \]

b) \[B = \mu H \quad \Rightarrow \quad H = \frac{B}{\mu} = \frac{B}{\mu_r \mu_0} \]

\[H = \frac{0.226}{(600)(4\pi 10^{-7})} = 300 \frac{\Lambda}{m} \]

11.2 La intensidad de la corriente en el arrollamiento de un anillo de Rowland es de 2 A. El anillo tiene 400 vueltas y la longitud de su circunferencia media es de 40 cm. Utilizando una bobina exploradora y un galvanómetro balístico se ha encontrado que la inducción magnética es de 1 Weber/m². Calcúlese:

a) La intensidad magnética. b) La magnetización. c) Susceptibilidad magnética. d) La corriente de magnetización superficial. e) La permeabilidad relativa.

e) \[B = \frac{\mu_r \mu_0 NI}{l} \quad \Rightarrow \quad \mu_r = \frac{Bl}{\mu_0 NI} \]

\[\mu_r = \frac{(1)(0.4)}{(4\pi 10^{-7})(400)(2)} = 398 \]
Capítulo 11. Propiedades Magnéticas de la Materia

11.3 Una barra imanada tiene una fuerza coercitiva de 4×10^3 A/m. Se desea desimanarla introduciéndola en un solenoide de 12 cm de longitud, que tiene 60 espiras. Qué intensidad de corriente debe circular por el solenoide.

11.4 Un devanado toroidal que lleva una corriente de 5 A consta de 300 espiras/m de alambre. El núcleo es hierro, el cual tiene una permeabilidad de 5000 μ_0 bajo las condiciones dadas. Determinar H, B y M dentro del núcleo.
Capítulo 11. Propiedades Magnéticas de la Materia

\[M - \frac{B}{\mu_0} - H \Rightarrow M = \frac{(5000 \mu_0 H)}{\mu_0} - H \approx 5000H \]

\[M = (5000)(1500) = 7.5 \times 10^6 \ \frac{\Lambda}{m} \]

11.5 Hallar la inductancia de una bobina toroidal cuyo núcleo está lleno con un material de permeabilidad \(\mu \). La bobina tiene \(N \) vueltas y el toroide tiene un radio medio \(R \).

\[B = \mu H \Rightarrow B = \frac{\mu NI}{2\pi r} \]

\[B = \mu H \Rightarrow B = \frac{\mu NI}{2\pi r} \]

\[\Phi = BA \]

\[\Phi = \frac{\mu NI \Lambda}{2\pi r} \]

\[L = \frac{N\Phi}{I} \Rightarrow L = \frac{\mu N^2 A}{2\pi r} \]

11.6 Un toroide de núcleo de hierro está devanado con 230 vueltas de alambre por metro de longitud. La corriente en el arrollado es de 6 A. Tomando la permeabilidad magnética del hierro como 5000 \(\mu_0 \), calcular: a) La intensidad magnética, b) La inducción magnética, c) La magnetización.

a) \[H = nI \Rightarrow H = (230)(6) = 1380 \ \frac{A}{m} \]

b) \[B = \mu H \Rightarrow B = (5000)(4\pi 10^{-7})(1380) = 8.67 \ \text{T} \]

c) \[M = \frac{B}{\mu_0} - H \Rightarrow M = \frac{8.67}{4\pi 10^{-7}} - 1380 = 6.9 \times 10^6 \ \frac{\Lambda}{m} \]
Capítulo 11. Propiedades Magnéticas de la Materia

11.7 Un toroide tiene 300 espiras de alambre y radio medio de 12 cm, lleva una corriente de 5 A. El núcleo es de hierro el cual tiene una permeabilidad relativa de 400. Cuál es la inducción magnética en el toroide.

\[
B = \frac{\mu_{0}NI}{2\pi r} = \frac{\mu_{r}\mu_{0}NI}{2\pi r}
\]

\[
B = \frac{(400)(4\pi \times 10^{-7})(300)(5)}{2\pi (0.12)} = 1 \text{ T}
\]

11.8 Un toroide tiene un radio medio de 18 cm. La corriente en la bobina es de 0.4 A. Cuántas vueltas se requieren para producir una intensidad magnética de 600 A/m en el interior del toroide.

\[
H = \frac{NI}{2\pi R} \Rightarrow N = \frac{2\pi RH}{I}
\]

\[
N = \frac{(2\pi)(0.18)(600)}{0.4} = 1696 \text{ vueltas}
\]

11.9 Un toroide de núcleo de aluminio está arrollado estrechamente con 10^6 vueltas/m. a) Qué corriente dará por resultado una magnetización de 1.61 A/m. b) Cuál es la densidad de flujo magnético en el núcleo. \(\chi_m\) para el aluminio es de 2.3 \times 10^{-5}.

a) \[
M = \chi_m H \Rightarrow H = \frac{1.61}{2.3 \times 10^{-5}} = 70000 \frac{A}{m}
\]

\[
H = \frac{nI}{n} \Rightarrow I = \frac{70000}{1 \times 10^5} = 7 \text{ A}
\]

b) \[
H = \frac{B}{\mu_0} - M \Rightarrow B = (H + M)\mu_0
\]

\[
B = \left[(70000) + (1.61)\right]2\pi \times 10^{-7} = 0.088 \text{ T}
\]
11.10 Una bobina toroidal delgada, de 55 cm de longitud total, se devana con 1100 vueltas de alambre. Por el alambre pasa una corriente de 1.7 A. ¿Cuál es la magnitud de la intensidad magnética dentro del toroide si el núcleo consiste de un material ferromagnético, con susceptibilidad magnética de 1.2×10^3?

\[
H = \frac{NI}{l}
\]

\[
H = \left(\frac{1100}{0.55} \right) \frac{1.7}{3400} \frac{A}{m}
\]
Capítulo 11. Propiedades Magnéticas de la Materia

1- En la tabla se muestra los datos experimentales de la susceptibilidad magnética del alambre férrico. Construya una gráfica de $1/X_m$ en función de la temperatura Kelvin y determine si se cumple la ley de Curie. En caso afirmativo, cuál es la constante de Curie.

<table>
<thead>
<tr>
<th>T [°C]</th>
<th>$X_m \times 10^{-4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-258</td>
<td>75</td>
</tr>
<tr>
<td>-173</td>
<td>11.3</td>
</tr>
<tr>
<td>-73</td>
<td>5.65</td>
</tr>
<tr>
<td>27</td>
<td>3.77</td>
</tr>
</tbody>
</table>

Respuesta: $C = 0.113$ grados

2- Una bobina toroidal tiene un radio medio de 12 cm y el área de su sección transversal es de 2 cm2. Hay 350 espiras arrolladas sobre un núcleo de hierro dulce cuya permeabilidad relativa es de 800. Calcule la corriente que se requiere para producir un flujo magnético de 4.2×10^4 webera través de la sección transversal del núcleo.

Respuesta: $I = 4.5$ A

3- Un disco de hierro de 6 cm de diámetro y 4 mm de espesor está imanado uniformemente en dirección perpendicular a sus bases. La magnetización es 1.5×10^6 A/m. a) Cuál es la corriente superficial de magnetización equivalente alrededor del borde del disco. b) Cuál es la densidad del flujo en el centro del disco. c) Cuál es la intensidad magnética en el centro del disco y su dirección respecto a la densidad de flujo. d) Cuál es la permeabilidad relativa del disco. e) Cuál es el momento magnético del disco.

Respuesta:

a) 6000 A
b) 0.126 Weber/m2
c) -14×10^5 A/m
d) $1/14$
e) 17 A.m2

4- Teniendo en cuenta el ciclo de Histéresis que se muestra en la figura. Supóngase que la ordenada del punto b, corresponde a una densidad de
Capítulo 11. Propiedades Magnéticas de la Materia

flujo de 1.6 Weber/m², y la abscisa, a una intensidad magnética H de 1000 A/m. Cuál será aproximadamente, la permeabilidad relativa en los puntos a, b, c, d, i, y j.

Respuesta: Punto a: 1280
Punto b: 1280
Punto c: 3840
Punto d: ∞
Punto i: 1600
Punto j: 0

5- Calcule la intensidad del campo magnético de una sustancia que se caracteriza por una magnetización de 1.02 x 10⁶ A/m y una densidad de flujo magnético de 2.28 T.

Respuesta: \(H = 7.95 \times 10^5 \) A/m

6- La densidad de flujo magnético es 1.2 T y está actuando sobre un toroide de núcleo de hierro. El toroide tiene un radio medio de 20 cm y una permeabilidad magnética de 5000 \(\mu_r \). a) Qué corriente se requiere si existen 300 espiras de alambre en el devanado. b) Cuál es la magnetización bajo estas condiciones.

Respuesta: a) \(I = 0.8 \) A
b) \(M = 9.55 \times 10^5 \) A/m

7- El material del núcleo de cierto toroide tiene una susceptibilidad magnética de -0.24 x 10⁻⁵. El toroide contiene 15 espiras/cm y lleva una corriente de 5 A. Calcule la magnetización del material del núcleo.

Respuesta: \(M = 0.018 \) A/m

8- Cuál es la permeabilidad magnética relativa de un material que tiene una susceptibilidad magnética de 1.2 x 10⁻⁵.

Respuesta: \(\mu_r = 1.000012 \)
9. El campo magnético en el interior de cierto solenoide tiene el valor de 6.5×10^{-4} T cuando el solenoide está vacío. Cuando se coloca un núcleo de hierro, el campo es de 1.4 T. a) Halle la permeabilidad magnética relativa en estas condiciones. b) Determine el vector de magnetización.

Respuesta:
\[a) \mu_r = 2300 \]
\[b) M = 1.11 \times 10^6 \text{ A/m} \]

10. Un solenoide recto de 5 cm de diámetro y 25 cm de longitud está devanado con 200 vueltas de alambre, por el cual pasan 5 A. Tiene un núcleo de susceptibilidad magnética 10^5. Calcule: a) La intensidad magnética dentro del alambre. b) El campo magnético dentro del solenoide. c) En qué factor cambia el campo magnético debido a la presencia del núcleo.

Respuesta:
\[a) H = 4000 \text{ A/m} \]
\[b) B = 5 \times 10^{-3} \text{ T} \]
\[c) \chi_m \]
Capítulo 12

Ecuaciones de Maxwell

JAMES CLERK MAXWELL
1831 - 1879 Escocia
12.1 Introducción

James Clerk Maxwell formuló cuatro ecuaciones que relacionan campos eléctricos y campos magnéticos con distribuciones de carga y densidades de corriente. Estas ecuaciones son la base de la teoría clásica electromagnética y se pueden representar en forma integral y diferencial.

A continuación se presentan las ecuaciones de Maxwell en las dos formas.

12.2 Ecuaciones de Maxwell en forma integral

a) Ley de Gauss

\[\varepsilon_0 \int \mathbf{E} \cdot d\mathbf{S} = Q_s + \int \mathbf{J} \cdot d\mathbf{V} \]

(12.1)

b) Ley de Gauss para el magnetismo

\[\int \mathbf{B} \cdot d\mathbf{S} = 0 \]

(12.2)

c) Ley de Ampere

\[\oint \mathbf{A} \cdot d\mathbf{l} = \mathbf{N} I_c + \int I_d \]

\[I_c = \int J \cdot d\mathbf{S} \]

\[I_d = \varepsilon_0 \frac{\partial \Phi}{\partial t} = \varepsilon_0 \frac{\partial}{\partial t} \int \mathbf{E} \cdot d\mathbf{S} \]
Capítulo 12. Ecuaciones de Maxwell

\[\int_{S} \mathbf{H} \cdot d\mathbf{l} = \int_{V} \mathbf{J} \cdot d\mathbf{S} + \varepsilon_0 \frac{\partial}{\partial t} \int_{S} \mathbf{E} \cdot d\mathbf{S} \quad (12.3) \]

d) Ley de Faraday

\[\mathbf{V} = -N \frac{\partial \Phi}{\partial t} : \quad \mathbf{V} = \int_{S} \mathbf{E} \cdot d\mathbf{l} \quad y \quad \Phi = \int_{S} \mathbf{B} \cdot d\mathbf{S} \]

\[\int_{S} \mathbf{E} \cdot d\mathbf{l} = -N \frac{\partial}{\partial t} \int_{V} \mathbf{B} \cdot d\mathbf{S} \quad (12.4) \]

12.3 Ecuaciones de Maxwell en forma diferencial

a) Ley de Gauss

\[\varepsilon_0 \int_{S} \mathbf{E} \cdot d\mathbf{S} = \int_{V} \rho dV \]

\[\varepsilon_0 \lim_{\Delta V \to 0} \frac{1}{\Delta V} \int_{S} \mathbf{E} \cdot d\mathbf{S} = \lim_{\Delta V \to 0} \frac{1}{\Delta V} \int_{V} \rho dV \]

Aplicando el teorema de la divergencia,

\[\varepsilon_0 \text{Div} \mathbf{E} = \rho \]

\[\text{Div} \mathbf{E} = \frac{\rho}{\varepsilon_0} \]

\[\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \]

\[\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = \frac{\rho}{\varepsilon_0} \quad (12.5) \]
b) Ley de Gauss para el magnetismo

\[\oint_S B \cdot dS = 0 \]

\[\lim_{\Delta V \to 0} \frac{1}{\Delta V} \int_S B \cdot dS = 0 \]

Div ím = 0

\[\nabla \cdot \vec{B} = 0 \]

\[\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0 \]

(12.6)

c) Ley de Ampere

\[\lim_{\Delta S \to 0} \int_S H \cdot dI = \lim_{\Delta S \to 0} \int_S J \cdot dS + \int_S \nabla \times \vec{H} \cdot dS \]

Apliando el teorema del rotacional,

\[\text{Rot} \vec{H} = \vec{J} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \]

\[\nabla \times \vec{H} = \vec{J} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \]

(12.7)

d) Ley de Faraday

\[\lim_{\Delta S \to 0} \frac{1}{\Delta S} \int_E \cdot dI = -N \lim_{\Delta S \to 0} \frac{1}{\Delta S} \frac{\partial}{\partial t} \int_S \vec{B} \cdot dS \]

Apliando el teorema del rotacional,

\[\text{Rot} \vec{E} = -N \frac{\partial \vec{B}}{\partial t} \]
Capítulo 12. Ecuaciones de Maxwell

\[\nabla \times \mathbf{E} = -\mathbf{N} \frac{\partial \mathbf{B}}{\partial t} \quad (12.8) \]

12.4 Ecuación de la onda electromagnética

La ecuación de onda electromagnética se puede deducir y obtener sus propiedades aplicando las ecuaciones de Maxwell.

Supongamos que se tiene un campo eléctrico \(\mathbf{E} \) en la dirección \(\mathbf{Y} \) y un campo magnético \(\mathbf{B} \) en la dirección \(\mathbf{Z} \) en el vacío como se muestra en la figura 12.1.

![Diagrama de campo eléctrico y magnético](image)

Fig. 12.1 Campo eléctrico y campo magnético vibrando perpendicularmente entre sí.

Aplicando la ley de Gauss en forma diferencial,

\[
\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = \frac{\rho}{\varepsilon_0} \quad \therefore \quad \rho = 0 \quad (\text{Vacío}), \quad E_x = E_y = 0
\]

\[
\frac{\partial E_z}{\partial y} = 0
\]

Aplicando la ley de Gauss para el magnetismo en forma diferencial,

\[
\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0 \quad \therefore \quad B_x = B_y = 0
\]
\[
\frac{\partial B_z}{\partial z} = 0
\]

Aplicando la ley de Ampere,

\[
\nabla \times \mathbf{H} = \mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \quad \therefore \quad \mathbf{J} = 0
\]

\[
\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial x} = \epsilon_0 \frac{\partial E_y}{\partial t}
\]

\[
\frac{\partial H_y}{\partial y} = 0 \quad \Rightarrow \quad \frac{\partial B_y}{\partial y} = 0
\]

\[
\frac{\partial B_x}{\partial x} = -\mu_0 \epsilon_0 \frac{\partial E_y}{\partial t} \quad \therefore \quad B_x = B, \quad E_y = E
\]

\[
\frac{\partial B_y}{\partial x} = -\mu_0 \epsilon_0 \frac{\partial E_z}{\partial t} \quad (1)
\]

Aplicando la ley de Faraday,

\[
\nabla \times \mathbf{E} = -N \frac{\partial \mathbf{B}}{\partial t} \quad \therefore \quad N = 1
\]

\[
-\frac{\partial E_x}{\partial z} + \frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t} k
\]

\[
\frac{\partial E_y}{\partial z} = 0
\]

\[
\frac{\partial E_y}{\partial x} = -\frac{\partial B_y}{\partial t} \quad \therefore \quad E_y = E, \quad B_y = B
\]

\[
\frac{\partial E}{\partial x} = -\frac{\partial B}{\partial t} \quad (2)
\]
Capítulo 12. Ecuaciones de Maxwell

Derivando la expresión (1) con respecto a t,
\[\frac{\partial^2 B}{\partial x \partial t} = -\mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2} \] (3)

Derivando la expresión (2) con respecto a x,
\[\frac{\partial^2 E}{\partial x^2} = -\frac{\partial^2 B}{\partial x \partial t} \] (4)

Reemplazando (4) en (3), se obtiene la ecuación diferencial de una onda para el campo eléctrico,
\[\frac{\partial^2 E}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2} \] (12.9)

Derivando la expresión (1) con respecto a x,
\[\frac{\partial^2 B}{\partial x^2} = -\mu_0 \epsilon_0 \frac{\partial^2 E}{\partial x \partial t} \] (5)

Derivando la expresión (2) con respecto a t,
\[\frac{\partial^2 E}{\partial x \partial t} = -\frac{\partial^2 B}{\partial t^2} \] (6)

Reemplazando (6) en (5), se obtiene la ecuación diferencial de una onda para el campo magnético,
\[\frac{\partial^2 B}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 B}{\partial t^2} \] (12.10)

La velocidad de estas ondas viene dada por,
\[\frac{1}{v^2} = \mu_0 \epsilon_0 \]
\[v = c = \sqrt{\frac{1}{\mu_0 \epsilon_0}} \] (12.11)
Colocando los valores correspondientes en las constantes se obtiene,

\[C = 3 \times 10^8 \text{ m/s} \]

Que es precisamente la velocidad de la luz en el vacío.

La solución de las ecuaciones diferenciales anteriores para el campo eléctrico y para el campo magnético de una onda plana es,

\[E = E_m \sin (kx - \omega t) \quad (7) \]
\[B = B_m \sin (kx - \omega t) \quad (8) \]

Donde \(E_m \) y \(B_m \) son los valores máximos de los campos. La constante \(K \), llamada constante de propagación de la onda viene dada por,

\[K = \frac{2\pi}{\lambda} \]

siendo \(\lambda \) la longitud de onda y \(\omega \) la frecuencia angular que viene dada por,

\[\omega = 2\pi f \]

donde \(f \) es la frecuencia de la onda electromagnética.

La relación \(\omega/K \) es,

\[\frac{\omega}{K} = \lambda f = C \]

derivando la expresión (7) con respecto a \(t \),

\[\frac{\partial E}{\partial t} = -\omega E_m \cos (Kx - \omega t) \quad (9) \]

Derivando la expresión (8) con respecto a \(x \),

\[\frac{\partial B}{\partial x} = KB_m \cos (Kx - \omega t) \quad (10) \]

reemplazando las expresiones (9) y (10) en la expresión (2) se llega a,
Capítulo 12. Ecuaciones de Maxwell

En la figura 12.2 se muestra la representación gráfica de una onda electromagnética plana que se propaga en la dirección x positiva.

Fig. 12.2 Representación de una onda electromagnética que se propaga en la dirección x.

12.5 Energía de la onda electromagnética

Las ondas electromagnéticas transportan energía, y a medida que se propagan a través del espacio, pueden transferir energía a los cuerpos que encuentra a su paso.

El flujo de energía de una onda electromagnética, o lo que es lo mismo, la rapidez con que fluye la energía por unidad de superficie de un área perpendicular al flujo se describe por un vector \mathbf{S}, denominado vector de Poynting y definido por la expresión,

$$ S = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B} \quad (12.13) $$

Las unidades del flujo de energía son (Joules/s)/m² = Watt/m²

12.6 Intensidad de la onda electromagnética

Como el flujo de energía varía en función del tiempo. El valor promedio de la magnitud de \mathbf{S} en un ciclo de la onda electromagnética se llama Intensidad (I), de la radiación.

Teniendo en cuenta la expresión (12.12) y la expresión (12.13),
12.7 Densidad de la onda electromagnética

Se sabe que la densidad de energía instantánea de un campo eléctrico es,

\[u_e = \frac{1}{2} \varepsilon_0 E^2 \]

y la densidad de energía instantánea del campo magnético es,

\[u_B = \frac{B^2}{2\mu_0} \]

pero,

\[C = \frac{E}{B_0} \implies B_0 = \frac{E}{C} \]

\[u_B = \frac{E^2}{2\mu_0 C^2} \implies C^2 = \frac{1}{\mu_0 \varepsilon_0} \]

\[u_B = \frac{E^2}{2\mu_0} = \frac{1}{2} \varepsilon_0 E^2 \]

\[\frac{1}{\mu_0 \varepsilon_0} \]

\[\frac{1}{2} \varepsilon_0 E^2 \]
De lo anterior se concluye que, para una onda electromagnética la densidad de energía instantánea asociada con el campo eléctrico es igual a la densidad de energía instantánea asociada con el campo magnético. Por lo tanto, en un volumen dado, la energía se comparte de igual manera para los dos campos.

La densidad de energía instantánea total es igual a la suma de las densidades de energía asociadas con los campos eléctrico y magnético:

\[u_e = \frac{1}{2} \varepsilon_0 E^2 + \frac{1}{2} \mu_0 H^2 \]

\[\mathbf{u} = \varepsilon_0 \mathbf{E}^2 \]

La densidad de energía total promedio en un ciclo es,

\[u_m = \frac{1}{2} \varepsilon_0 E_m^2 \]

\[C = \frac{E_m}{B_m} \Rightarrow E_m = CB_m \]

\[u_m = \frac{1}{2} \varepsilon_0 (CB_m)^2 = \frac{1}{2} \varepsilon_0 B_m^2 C^2 \]

\[I = Cu_m \]

12.8 Cantidad de movimiento o momentum de la onda electromagnética

Supongamos una onda electromagnética que llega perpendicularly a una lámina como se muestra en la figura 12.3. La onda llega sobre un electrón de la lámina, la componente del campo eléctrico de la onda ejerce una fuerza sobre el electrón,
Capítulo 12. Ecuaciones de Maxwell

La fuerza magnética debida a la componente del campo magnético de la onda sobre el electrón es,

\[F_m = evB \]

\[F_m = \frac{e^2EBt}{m} \]

\[dp = F_m dt \]

\[dp = \frac{e^2EBt}{m} dt \Rightarrow p = \frac{e^2EBt^2}{2m} \]

\[E_s = \frac{1}{2}m v^2 \Rightarrow v = \frac{Ee}{m} t \]

\[E_s = \frac{1}{2} \left(\frac{Ee}{m} t \right)^2 = \frac{1}{2} \frac{E^2e^2t^2}{m} \]
Capítulo 12. Ecuaciones de Maxwell

\[p = \frac{U}{C} \quad (12.18) \]

Para el caso en que la superficie sea completamente reflectora, la cantidad de movimiento total transferida a esa superficie, es

\[p = \frac{2U}{C} \quad (12.19) \]

12.9 Presión de radiación de la onda electromagnética

La presión se define como,

\[P_r = \frac{F}{A} \quad \Rightarrow \quad F = \Delta p \Delta t \]

\[P_r = \frac{\Delta p}{A} = \frac{\Delta p}{\Delta t} \quad \therefore \quad \frac{\Delta p}{\Delta t} = \frac{1}{C} \frac{\Delta U}{\Delta t} \]

\[P_r = \frac{1}{C} \frac{\Delta U}{A \Delta t} \]

pero,

\[S = \frac{\Delta U}{A \Delta t} \]

La presión de radiación electromagnética en una superficie completamente absorbente es,

\[P_r = \frac{S}{C} \quad (12.20) \]

Si la superficie es completamente reflectora, la presión de radiación viene dada por,
12.10 Espectro de radiación electromagnética

Todas las ondas electromagnéticas viajan en el espacio vacío con la velocidad de la luz C. Estas ondas transportan energía y cantidad de movimiento de alguna fuente hasta un receptor como se observó anteriormente.

La frecuencia f y la longitud de onda λ de las ondas electromagnéticas se pueden relacionar mediante la siguiente expresión,

$$ C = \lambda f \quad (12.22) $$

A continuación se muestra un diagrama del espectro electromagnético en función de la frecuencia y longitud de onda de todas las ondas existentes en la naturaleza.
Ondas de radio: Son el resultado de la aceleración de cargas a través de alambres conductores. Son generadas por dispositivos electrónicos como osciladores.

Microondas: Son ondas de radio de corta longitud de onda y son generadas por dispositivos electrónicos.

Rayos infrarrojos: También llamadas ondas térmicas, son generadas por las vibraciones de los átomos o moléculas.

Luz visible: Es la parte del espectro que puede percibir el ojo humano, es generada por los cambios de estado de los electrones en los átomos.

Ultravioleta: Se genera por las transiciones atómicas de los electrones exteriores y por las transiciones nucleares que ocurren en el sol.

Rayos X: Se generan por las transiciones electrónicas de los electrones interiores de los átomos y por la desaceleración brusca de las cargas eléctricas (como los electrones).

Rayos gamma: Son generadas por las transiciones en el núcleo atómico y por la desintegración de ciertas partículas elementales.

Rayos cósmicos: Son partículas cargadas que se originan del Sol, de las estrellas y cuerpos del universo.
12.1 A partir de las ecuaciones de Maxwell deduzca la ley de Coulomb.

Aplicando la ley de Gauss:

\[
\int_S \varepsilon_0 E \cdot d\mathbf{S} = Q_n
\]
\[
\int_S \varepsilon_0 E \cdot d\mathbf{S} \cos \theta = Q_n
\]
\[
\varepsilon_0 E S = Q
\]
\[
E = \frac{Q}{\varepsilon_0 4\pi r^2}
\]
\[
F = E Q_0
\]
\[
F = \frac{Q Q_0}{\varepsilon_0 4\pi r^2} \Rightarrow F = \frac{1}{4\pi \varepsilon_0} \frac{Q Q_0}{r^2}
\]

Donde \(Q_0 \) es la carga de prueba colocada en la superficie gaussiana.

12.2 El campo de un problema una onda electromagnética plana en el vacío se representa por: \(E_x = 0, E_y = 0.5 \cos[2\pi \times 10^8 (t - x/C)], E_z = 0 \). a) Determinar la longitud de onda. b) La dirección de propagación. c) Calcular el campo magnético de la onda. d) Calcular la intensidad de la onda electromagnética.

a) \(K = \frac{\omega}{C} \)

\[
K = \frac{2\pi \times 10^8}{3 \times 10^8} = \frac{2\pi}{3} \text{ m}^2
\]
\[
\frac{2\pi}{\lambda} = \frac{2\pi}{3} \Rightarrow \lambda = 3 \text{ m}
\]
b) Dirección positiva de x.

c) $B_x = B_y = 0$

$$B_x = B_0 \cos \left(\frac{2\pi \times 10^8 t}{C} - \frac{2\pi \times 10^9}{x} \right) T$$

$$B_\phi = \frac{E_0}{C} = \frac{0.5}{3 \times 10^8} = \frac{1}{6} \times 10^{-8} T$$

$$B_z = \frac{1}{6} \times 10^{-8} \cos \left(\frac{2\pi \times 10^4 t}{C} - \frac{2\pi \times 10^9}{x} \right) T$$

d) $S = \frac{E_0 B_0}{2 \mu_0} = \frac{0.5 \times 10^{-8}}{2 \times (4\pi \times 10^{-7})} = 3.31 \times 10^{-4}$ Watt/m2

12.3 Una onda electromagnética de la parte visible del espectro tiene una longitud de onda de 550 nanómetros, y la amplitud de su campo eléctrico es de 670 V/m. Determine la frecuencia de la onda y la amplitud del campo magnético. Si la onda viaja en dirección X positiva y su fase es cero cuando x y t son cero, escriba las ecuaciones de $E(x,t)$ y $B(x,t)$.

$$f = \frac{C}{\lambda} = \frac{3 \times 10^8}{550 \times 10^{-9}} = 5.5 \times 10^{14} \text{ Hz}$$

$$B_0 = \frac{E_0}{C} = \frac{670}{3 \times 10^8} = 2.2 \times 10^{-6} \text{ T}$$

$$\omega = 2\pi f = 2\pi (5.5 \times 10^{14}) = 3.4 \times 10^{15} \text{ rad/s}$$

$$K = \frac{2\pi}{\lambda} = \frac{2\pi}{550 \times 10^{-9}} = 1.14 \times 10^7 \text{ m}^{-1}$$
E(x,t) = 670 \text{Sen}(1.14 \times 10^7 x - 3.4 \times 10^{15} t)

B(x,t) = 2.2 \times 10^{-6} \text{Sen}(1.14 \times 10^7 x - 3.4 \times 10^{15} t)

12.4 Determine la intensidad a la que una onda electromagnética plana de amplitud \(E_m = 17 \text{ V/m} \) transporta energía por unidad de área.

\[
I = \frac{E^2}{2\mu_0 c} = \frac{(17)^2}{2 \times 4\pi \times 10^{-7} \times 3 \times 10^8} = 0.38 \text{ Watt/m}^2
\]

12.5 Un haz de rayo láser con \(S = 1 \times 10^6 \text{ Watt/m}^2 \) incide normalmente en una lámina de plástico; el 70% se refleja y el 30% se absorbe. Calcule la presión de radiación sobre el plástico.

Para la fracción reflejada: \(P_r = \eta \frac{2S}{C} \), donde \(\eta \) es la fracción porcentual.

Para la fracción absorbida: \(P_a = (1 - \eta) \frac{S}{C} \)

\[
P = P_r + P_a = \eta \frac{2S}{C} + (1 - \eta) \frac{S}{C} = \frac{(1 + \eta)S}{C}
\]

\[
P = (1.7) \left(\frac{1 \times 10^6}{3 \times 10^8} \right) = 5.7 \times 10^{-3} \text{ NW/m}^2
\]

12.6 El sol emite radiación ultravioleta de 1.216 \times 10^{-7} \text{ m} de longitud de onda. Si la magnitud media del vector Poyting debido sólo a esta longitud de onda es de 6 \times 10^{-3} \text{ Watt/m}^2 en la tierra, determinar la potencia total radiada por el sol, determinar la amplitud del campo eléctrico y magnético en la superficie del sol y en la tierra. La distancia entre sol y tierra es de 1.496 \times 10^{11} \text{ m}. El radio del sol es de 696 \times 106 \text{ m}.

Para la tierra:

\[
\overline{S} = \frac{P}{\pi r^2} = \frac{P}{4\pi r^2} \Rightarrow P = 4\pi r^2 \overline{S}
\]
Capítulo 12. Ecuaciones de Maxwell

\[P = (4\pi)(1.496 \times 10^{11})(6 \times 10^{-3}) = 1.7 \times 10^{21} \text{ Watt} \]

\[S = \frac{E_m^2}{2\mu_0 C} \Rightarrow E_m = \sqrt{2\mu_0 CS} \]

\[E_m = \sqrt{(2)(4\pi \times 10^{-7})(3 \times 10^8)(6 \times 10^{-3})} = 2.13 \frac{V}{m} \]

\[B_m = \frac{E_m}{C} = \frac{2.13}{3 \times 10^8} = 7.1 \times 10^{-10} \text{ T} \]

Para el sol:

\[S = \frac{P}{4\pi r^2} = \frac{1.7 \times 10^{21}}{(4\pi)(6.96 \times 10^8)^2} = 279.4 \text{ watt/m}^2 \]

\[S = \frac{E_m^2}{2\mu_0 C} \Rightarrow E_m = \sqrt{2\mu_0 CS} = \sqrt{(2)(279.4)(4\pi \times 10^{-7})(3 \times 10^8)} \]

\[S = 459 \text{ Watt/m}^2 \]

\[B_m = \frac{E_m}{C} = \frac{459}{3 \times 10^8} = 1.53 \times 10^{-6} \text{ T} \]

12.7 En una superficie no reflejante, perpendicularly se hace incidir un haz de luz, con un flujo de energía de 15 Watt/cm². Si la superficie tiene 40 cm² de área, calcular la fuerza media ejercida sobre la superficie, durante un lapso de 30 minutos.

\[S = \frac{P}{A} \Rightarrow P = SA \]

\[U = SAT \Rightarrow U = (15)(40)(30)(60) = 1.08 \times 10^6 \text{ Joules} \]

338
12.8 Las ondas electromagnéticas planas de determinada frecuencia inciden normalmente a la superficie de la tierra. Suponga que la amplitud del campo eléctrico es de 500 V/m. a) Cuál es la amplitud del campo magnético, b) Obtenga el valor medio del vector Poyting.

a) \[B_m = \frac{E_m}{C} = \frac{500}{3 \times 10^8} = 1.6 \times 10^{-6} \text{ T} \]

b) \[\bar{S} = \frac{E_m B_m}{2 \mu_0} = \frac{500(1.66 \times 10^{-8})}{2(4\pi \times 10^{-7})} = 331.7 \text{ Watt/m}^2 \]

12.9 Una lámpara radia isotrópicamente 15 Watt. Calcule los valores máximos de los campos eléctrico y magnético a distancias de a) 1 m. b) 5 m desde la fuente.

a) \[\bar{S} = \frac{P}{A} \Rightarrow \bar{S} = \frac{P}{4\pi R^2} = \frac{15}{4\pi (1)^2} = 1.19 \text{ Watt/m}^2 \]

\[\bar{S} = \frac{E_m B_m}{2 \mu_0} = \frac{E_m^2}{2 \mu_0 C} \Rightarrow E_m = \sqrt{2\mu_0 CS} \]

\[E_m = \sqrt{\left(2 \times 10^{-7}\right)\left(3 \times 10^8\right)(1.19)} = 30 \text{ V/m} \]

\[B_m = \frac{E_m}{C} \Rightarrow B_m = \frac{30}{3 \times 10^8} = 0.1 \mu\text{T} \]
Capítulo 12. Ecuaciones de Maxwell

b) \[S = \frac{P}{4\pi R^2} \quad \Rightarrow \quad \overline{S} = \frac{15}{(4\pi)^2} = 0.047 \frac{\text{Watt}}{m^2} \]

\[\overline{S} = \frac{E_m B_m}{2\mu_o} = \frac{E_m^2}{2\mu_o C} \quad \Rightarrow \quad E_m = \sqrt{2\mu_o C S} \]

\[E_m = \sqrt{(2)(4\pi \times 10^{-7})(3 \times 10^8)(0.047)} = 6 \frac{V}{m} \]

\[B_m = \frac{E_m}{C} \quad \Rightarrow \quad B_m = \frac{6}{3 \times 10^8} = 2 \times 10^{-4} \frac{T}{m} \]

12.10 A que distancia de una fuente de potencia de 30 Watt de una onda electromagnética isotrópica se tendrá un \(E_m = 10 \frac{V}{m} \).

\[\overline{S} = \frac{E_m B_m}{2\mu_o} = \frac{E_m^2}{2\mu_o C} = \frac{(10)^2}{(2)(4\pi \times 10^{-7})(3 \times 10^8)} = 0.132 \frac{\text{Watt}}{m^2} \]

\[A = \frac{P}{\overline{S}} = \frac{30}{0.132} = 227.27 \text{ m}^2 \]

\[A = 4\pi R^2 \quad \Rightarrow \quad R^2 = \frac{A}{4\pi} \quad \Rightarrow \quad R = \sqrt{\frac{A}{4\pi}} = \sqrt{\frac{227.27}{4\pi}} = 4.25 \text{ m} \]

340
1- Compruebe la consistencia de las dimensiones de ambos lados de cada una de las cuatro ecuaciones de Maxwell.

2- Las leyes de Gauss para los campos eléctrico y magnético difieren debido a la falta de cargas magnéticas. Suponga que existen los monopolos magnéticos (cargas magnéticas), representados por el símbolo M. Formule nuevamente la ley de Gauss para los campos magnéticos y especifique las unidades de M en el sistema internacional.

3- La ley de Ampere y la ley de Faraday difieren por la falta de un término de corriente en la ley de Faraday. Suponga que existen los monopolos magnéticos (M) y reformule la ley de Faraday. Describa el significado físico de los términos nuevos que añade.

4- Con base a las ecuaciones de Maxwell demuestre la ley de Mallas de Kirchhoff para una malla que contenga R-L-C.

5- Demuestre que \(\frac{1}{\sqrt{H_0 E_0}} \) tiene unidades de velocidad.

6- La amplitud del campo magnético de una onda electromagnética es de \(2 \times 10^{-7} \) T. Calcule la amplitud del campo eléctrico si la onda viaja a) En el espacio libre, b) En un medio en el cual la velocidad de la onda es 0.75 C.

Respuesta:

a) \(E_m = 60 \) V/m

b) \(E_m = 45 \) V/m

7- Una fuente de luz isotrópica emite energía a 100 watts. Calcular las magnitudes de las amplitudes del campo eléctrico y el campo magnético en un punto que se encuentra a 20 m de la fuente.
Respuesta: \[E_m = 3.87 \text{ V/m} \]
\[B_m = 1.29 \times 10^{-8} \text{ T} \]

8- El sol está a 1.5×10^{11} m de la tierra, y su potencia luminica es de 3.9×10^{26} Watt. Cuál es la amplitud media del campo eléctrico en la radiación solar en la atmósfera terrestre superior.

Respuesta: \[E_m = 1000 \text{ V/m} \]

9- La radiación electromagnética del sol cae sobre la superficie terrestre a razón de 1.4×10^3 Watt/m2. Halle las magnitudes de los campos eléctrico y magnético de la onda.

Respuesta: \[E = 1.15 \times 10^3 \text{ V/m} \]
\[B = 3.84 \times 10^{-6} \text{ T} \]

10- Una onda de radio transmite 1.5 Watt/m2 a una superficie plana perpendicular a la dirección de propagación de la onda. Calcule la presión de radiación sobre la superficie si ésta es un absorvente perfecto.

Respuesta: \[P_r = 5 \times 10^{-9} \text{ NW/m}^2 \]
Apéndice
Sistemas de coordenadas

Coordenadas cartesianas

Coordenadas:
- x, y, z

Vectores unitarios:
- \(\hat{i}, \hat{j}, \hat{k} \)

Vector de posición:
- \(\mathbf{r} = x \hat{i} + y \hat{j} + z \hat{k} \)

Elemento de longitud:
- \(d\mathbf{r} = dx \hat{i} + dy \hat{j} + dz \hat{k} \)

Elemento de superficie:
- \(dx \, dy \quad z = \text{cte} \)
- \(dx \, dz \quad y = \text{cte} \)
- \(dy \, dz \quad x = \text{cte} \)
Elemento de volumen:
$$dv = dx \, dy \, dz$$

Gradiente:
$$\nabla f = \frac{\partial f}{\partial x} i + \frac{\partial f}{\partial y} j + \frac{\partial f}{\partial z} k$$

Divergencia:
$$\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

Rotacional:
$$\nabla \times \mathbf{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) i + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) j + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) k$$

Laplaciano:
$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

Coordenadas cilíndricas

Coordenadas:
$$\rho, \phi, z$$
Apéndice

Transformaciones:

\[x = \rho \cos \varphi \]
\[y = \rho \sin \varphi \]
\[z = z \]

Vectores unitarios:

\[\hat{u}_\rho = \cos \varphi \hat{i} + \sin \varphi \hat{j} \]
\[\hat{u}_\varphi = -\sin \varphi \hat{i} + \cos \varphi \hat{j} \]
\[\hat{k} = \hat{k} \]

Vector de posición:

\[\vec{r} = \rho \hat{u}_\rho + z \hat{k} \]

Elemento de longitud:

\[d\vec{r} = d\rho \hat{u}_\rho + \rho d\varphi \hat{u}_\varphi + dz \hat{k} \]

Elemento de superficie:

\[\rho d\varphi dz \quad \rho = \text{cte} \]
\[dp dz \quad \varphi = \text{cte} \]
\[\rho dp d\varphi \quad z = \text{cte} \]

Elemento de volumen:

\[dv = \rho dp d\varphi dz \]

Gradiente:

\[\nabla f = \frac{\partial f}{\partial \rho} \hat{u}_\rho + \frac{1}{\rho} \frac{\partial f}{\partial \varphi} \hat{u}_\varphi + \frac{\partial f}{\partial z} \hat{k} \]

Divergencia:

\[\nabla \cdot \vec{F} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho F_\rho \right) + \frac{1}{\rho} \frac{\partial F_\varphi}{\partial \varphi} + \frac{\partial F_z}{\partial z} \]
Apéndice

Rotacional:

$$\nabla \times \mathbf{F} = \left(\frac{1}{\rho} \frac{\partial \mathbf{F}_z}{\partial \varphi} - \frac{\partial \mathbf{F}_\varphi}{\partial z} \right) \hat{\mathbf{u}}_\rho + \left(\frac{\partial \mathbf{F}_\rho}{\partial z} - \frac{\partial \mathbf{F}_z}{\partial \rho} \right) \hat{\mathbf{u}}_\varphi + \frac{1}{\rho} \left(\frac{\partial}{\partial \varphi} (\rho \mathbf{F}_\rho) - \frac{\partial \mathbf{F}_\varphi}{\partial \varphi} \right) \hat{k}$$

Laplaciano:

$$\nabla^2 f = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{\partial^2 f}{\partial z^2}$$

Coordenadas esféricas

Coordenadas:

r, θ, ϕ

Transformaciones:

$x = r \text{ Sen } \theta \text{ Cos } \phi$

$y = r \text{ Sen } \theta \text{ Sen } \phi$

$z = r \text{ Cos } \theta$

Vectores unitarios:

$$\hat{\mathbf{u}}_r = \text{ Sen } \theta (\text{ Cos } \phi \hat{i} + \text{ Sen } \phi \hat{j}) + \text{ Cos } \theta \hat{k}$$

$$\hat{\mathbf{u}}_\theta = \text{ Cos } \theta (\text{ Cos } \phi \hat{i} + \text{ Sen } \phi \hat{j}) - \text{ Sen } \theta \hat{k}$$
Apéndice

\[\mathbf{u}_\varphi = -\text{Sen} \varphi \mathbf{i} + \text{Cos} \varphi \mathbf{j} \]

Vector de posición:

\[\mathbf{r} = r \mathbf{u}_r \]

Elemento de longitud:

\[d\mathbf{r} = dr \mathbf{u}_r + r d\theta \mathbf{u}_\theta + r \text{Sen}\theta d\varphi \mathbf{u}_\varphi \]

Elemento de superficie:

\[r^2 \text{Sen}\theta d\theta d\varphi \]
\[r dr \text{Sen}\theta d\varphi \]
\[r dr d\theta \]

\[\varphi = \text{cte} \]

Elemento de volumen:

\[dv = r^2 \text{Sen}\theta dr d\theta d\varphi \]

Gradiente:

\[\nabla \mathbf{F} = \frac{\partial \mathbf{F}}{\partial r} \mathbf{u}_r + \frac{1}{r} \frac{\partial \mathbf{F}}{\partial \theta} \mathbf{u}_\theta + \frac{1}{r \text{Sen}\theta} \frac{\partial \mathbf{F}}{\partial \varphi} \mathbf{u}_\varphi \]

Divergencia:

\[\nabla \cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 F_r \right) + \frac{1}{r \text{Sen}\theta} \frac{\partial}{\partial \theta} \left(\text{Sen}\theta F_\theta \right) + \frac{1}{r \text{Sen}\theta} \frac{\partial}{\partial \varphi} \]

Rotacional:

\[\nabla \times \mathbf{F} = \frac{1}{r \text{Sen}\theta} \left(\frac{\partial}{\partial \theta} \left(\text{Sen}\theta F_\varphi \right) - \frac{\partial F_\theta}{\partial \varphi} \right) \mathbf{u}_r + \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r F_\theta \right) - \frac{\partial}{\partial \theta} \left(\text{Sen}\theta F_\varphi \right) \right) \mathbf{u}_\theta + \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r F_\varphi \right) - \frac{\partial}{\partial \varphi} \left(\text{Sen}\theta F_\theta \right) \right) \mathbf{u}_\varphi \]
Laplaciano:

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$
Algunas constantes físicas

<table>
<thead>
<tr>
<th>CONSTANTE</th>
<th>SIMBOLO</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad en la superficie terrestre</td>
<td>g</td>
<td>9.80665 m/seg²</td>
</tr>
<tr>
<td>Radio de la Tierra</td>
<td>R<sub>t</sub></td>
<td>6.374 x 10<sup>6</sup> m</td>
</tr>
<tr>
<td>Masa de la Tierra</td>
<td>m<sub>t</sub></td>
<td>5.976 x 10<sup>24</sup> kg</td>
</tr>
<tr>
<td>Masa de la Luna</td>
<td>m<sub>l</sub></td>
<td>7.350 x 10<sup>22</sup> kg</td>
</tr>
<tr>
<td>Distancia media entre Tierra y Luna</td>
<td>D<sub>l</sub></td>
<td>3.844 x 10<sup>6</sup> m</td>
</tr>
<tr>
<td>Masa del Sol</td>
<td>m<sub>s</sub></td>
<td>1.989 x 10<sup>30</sup> kg</td>
</tr>
<tr>
<td>Radio del Sol</td>
<td>R<sub>s</sub></td>
<td>6.96 x 10<sup>6</sup> m</td>
</tr>
<tr>
<td>Distancia media entre Tierra y Sol</td>
<td>D<sub>ss</sub></td>
<td>1.496 x 10<sup>11</sup> m</td>
</tr>
<tr>
<td>Período de la órbita terrestre alrededor del Sol</td>
<td>T<sub>r</sub></td>
<td>3.156 x 10<sup>10</sup> seg</td>
</tr>
<tr>
<td>Diámetro de la Vía Láctea</td>
<td>D<sub>vl</sub></td>
<td>7.5 x 10<sup>20</sup> m</td>
</tr>
<tr>
<td>Masa de la Vía Láctea</td>
<td>m<sub>vl</sub></td>
<td>2.7 x 10<sup>41</sup> kg</td>
</tr>
<tr>
<td>Parámetro de Hubble</td>
<td>H</td>
<td>2.5 x 10<sup>-16</sup> sec<sup>-1</sup></td>
</tr>
<tr>
<td>Velocidad de la luz en el vacío</td>
<td>c</td>
<td>2.99792458 x 10<sup>8</sup> m/seg</td>
</tr>
<tr>
<td>Constante gravitacional</td>
<td>G</td>
<td>6.67259 x 10<sup>-11</sup> nm<sup>2</sup>/kg<sup>2</sup></td>
</tr>
<tr>
<td>Número de Avogadro</td>
<td>N<sub>A</sub></td>
<td>6.02214 x 10<sup>23</sup> mol<sup>-1</sup></td>
</tr>
<tr>
<td>Constante universal de los gases</td>
<td>R</td>
<td>8.31451 joules/mol·°K</td>
</tr>
<tr>
<td>Constante de Boltzmann</td>
<td>k</td>
<td>1.38066 x 10<sup>-23</sup> joules·°K<sup>-1</sup></td>
</tr>
<tr>
<td>Constante de Stefan-Boltzmann</td>
<td>α</td>
<td>5.67 x 10<sup>8</sup> W/m<sup>2</sup>·°K<sup>-1</sup></td>
</tr>
<tr>
<td>Carga del electrón y protón</td>
<td>ε<sub>e</sub></td>
<td>1.60218 x 10<sup>-19</sup> coul</td>
</tr>
<tr>
<td>Carga de la partícula α</td>
<td>ε<sub>α</sub></td>
<td>3.2 x 10<sup>-19</sup> coul</td>
</tr>
<tr>
<td>Carga del deuterón</td>
<td>ε<sub>d</sub></td>
<td>1.6 x 10<sup>-19</sup> coul</td>
</tr>
<tr>
<td>Permitividad eléctrica en el vacío</td>
<td>ε<sub>e</sub></td>
<td>8.85418 x 10<sup>-12</sup> coul<sup>2</sup>/nm·m<sup>2</sup></td>
</tr>
<tr>
<td>Permeabilidad magnética en el vacio</td>
<td>μ<sub>e</sub></td>
<td>4x10<sup>-7</sup> Tesla/m·amp</td>
</tr>
<tr>
<td>Magnetón de Bohr</td>
<td>μ<sub>B</sub></td>
<td>9.27 x 10<sup>-10</sup> A·m<sup>-1</sup></td>
</tr>
<tr>
<td>Masa del electrón</td>
<td>m<sub>e</sub></td>
<td>9.10939 x 10<sup>-31</sup> kg</td>
</tr>
<tr>
<td>Masa del protón</td>
<td>m<sub>p</sub></td>
<td>1.67262 x 10<sup>-27</sup> kg</td>
</tr>
<tr>
<td>Masa del neutron</td>
<td>m<sub>n</sub></td>
<td>1.67493 x 10<sup>-28</sup> kg</td>
</tr>
<tr>
<td>Masa del deuterón</td>
<td>m<sub>d</sub></td>
<td>3.34755 x 10<sup>-27</sup> kg</td>
</tr>
<tr>
<td>Masa de la partícula α</td>
<td>m<sub>α</sub></td>
<td>6.6951 x 10<sup>-31</sup> kg</td>
</tr>
<tr>
<td>Unidad de masa atómica (urna)</td>
<td>u</td>
<td>1.661 x 10<sup>-24</sup> kg</td>
</tr>
<tr>
<td>Constante de Planck</td>
<td>h</td>
<td>6.62608 x 10<sup>-34</sup> joules·seg</td>
</tr>
<tr>
<td>Constante de Rydberg</td>
<td>R<sub>α</sub></td>
<td>1.09737 x 10<sup>7</sup> m<sup>-1</sup></td>
</tr>
<tr>
<td>Constante electrostática en el vacio</td>
<td>K</td>
<td>9 x 10<sup>9</sup> nm<sup>2</sup>/coul<sup>2</sup></td>
</tr>
<tr>
<td>Presión atmosférica</td>
<td>P<sub>a</sub></td>
<td>1.01 x 10<sup>5</sup> nm/seg<sup>2</sup></td>
</tr>
<tr>
<td>Punto de congelación del agua</td>
<td>T<sub>f</sub></td>
<td>273.15 °K</td>
</tr>
</tbody>
</table>
Alfabeto Griego

<table>
<thead>
<tr>
<th>Alfabeto Griego</th>
<th>Letra</th>
<th>Simbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfa</td>
<td>Α</td>
<td>α</td>
</tr>
<tr>
<td>Beta</td>
<td>Β</td>
<td>β</td>
</tr>
<tr>
<td>Gamma</td>
<td>Γ</td>
<td>γ</td>
</tr>
<tr>
<td>Delta</td>
<td>Δ</td>
<td>δ</td>
</tr>
<tr>
<td>Epsilon</td>
<td>Ε</td>
<td>ε</td>
</tr>
<tr>
<td>Zeta</td>
<td>Ζ</td>
<td>ζ</td>
</tr>
<tr>
<td>Nu</td>
<td>Ν</td>
<td>ν</td>
</tr>
<tr>
<td>Xi</td>
<td>Ξ</td>
<td>ξ</td>
</tr>
<tr>
<td>Omicron</td>
<td>Ω</td>
<td>ο</td>
</tr>
<tr>
<td>Pi</td>
<td>Π</td>
<td>π</td>
</tr>
<tr>
<td>Ro</td>
<td>Ρ</td>
<td>ρ</td>
</tr>
<tr>
<td>Sigma</td>
<td>Σ</td>
<td>σ</td>
</tr>
<tr>
<td>Eta</td>
<td>Η</td>
<td>η</td>
</tr>
<tr>
<td>Theta</td>
<td>Θ</td>
<td>θ</td>
</tr>
<tr>
<td>Iota</td>
<td>Ι</td>
<td>ι</td>
</tr>
<tr>
<td>Kappa</td>
<td>Κ</td>
<td>κ</td>
</tr>
<tr>
<td>Lambda</td>
<td>Λ</td>
<td>λ</td>
</tr>
<tr>
<td>Mu</td>
<td>Μ</td>
<td>μ</td>
</tr>
<tr>
<td>Tau</td>
<td>Τ</td>
<td>τ</td>
</tr>
<tr>
<td>Upsilon</td>
<td>Υ</td>
<td>υ</td>
</tr>
<tr>
<td>Phi</td>
<td>Φ</td>
<td>Φ</td>
</tr>
<tr>
<td>Chi</td>
<td>Χ</td>
<td>χ</td>
</tr>
<tr>
<td>Psi</td>
<td>Ψ</td>
<td>ψ</td>
</tr>
<tr>
<td>Omega</td>
<td>Ω</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Prefijos para múltiplos de unidades del sistema internacional

<table>
<thead>
<tr>
<th>FACTOR DE MULTIPLICACIÓN</th>
<th>PREFIJO</th>
<th>SÍMBOLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{12}</td>
<td>Tera</td>
<td>T</td>
</tr>
<tr>
<td>10^9</td>
<td>Giga</td>
<td>G</td>
</tr>
<tr>
<td>10^6</td>
<td>Mega</td>
<td>M</td>
</tr>
<tr>
<td>10^3</td>
<td>Kilo</td>
<td>K</td>
</tr>
<tr>
<td>10^2</td>
<td>Hecto</td>
<td>H</td>
</tr>
<tr>
<td>10</td>
<td>Deca</td>
<td>Da</td>
</tr>
<tr>
<td>10^1</td>
<td>Deci</td>
<td>D</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>Centi</td>
<td>C</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>Mili</td>
<td>M</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>Micro</td>
<td>μ</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>Nano</td>
<td>N</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>Pico</td>
<td>P</td>
</tr>
<tr>
<td>10^{-15}</td>
<td>Femto</td>
<td>F</td>
</tr>
<tr>
<td>10^{-18}</td>
<td>ato</td>
<td>A</td>
</tr>
</tbody>
</table>
Unidades básicas del sistema internacional

<table>
<thead>
<tr>
<th>CANTIDAD BÁSICA</th>
<th>NOMBRE</th>
<th>SÍMBOLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>Metro</td>
<td>m</td>
</tr>
<tr>
<td>Masa</td>
<td>Kilogramo</td>
<td>kg</td>
</tr>
<tr>
<td>Tiempo</td>
<td>Segundo</td>
<td>s</td>
</tr>
<tr>
<td>Corriente eléctrica</td>
<td>Ampere</td>
<td>A</td>
</tr>
<tr>
<td>Temperatura</td>
<td>Kelvin</td>
<td>Q</td>
</tr>
<tr>
<td>Cantidad de masa</td>
<td>Mol</td>
<td>mol</td>
</tr>
<tr>
<td>Intensidad luminosa</td>
<td>Candela</td>
<td>cd</td>
</tr>
</tbody>
</table>

Factores de Conversión

LARGITUDE

<table>
<thead>
<tr>
<th></th>
<th>m</th>
<th>cm</th>
<th>km</th>
<th>pulg</th>
<th>pie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m</td>
<td>1</td>
<td>100</td>
<td>0.001</td>
<td>39.37</td>
<td>3.281</td>
</tr>
<tr>
<td>1 cm</td>
<td>0.01</td>
<td>1</td>
<td>0.0001</td>
<td>0.3937</td>
<td>0.03281</td>
</tr>
<tr>
<td>1 km</td>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>39370</td>
<td>3281</td>
</tr>
<tr>
<td>1 pulg</td>
<td>0.0254</td>
<td>2.54</td>
<td>0.000254</td>
<td>1</td>
<td>0.08333</td>
</tr>
<tr>
<td>1 pie</td>
<td>0.3048</td>
<td>30.48</td>
<td>0.0003048</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>1 milla</td>
<td>1609</td>
<td>160900</td>
<td>1.609</td>
<td>53360</td>
<td>5280</td>
</tr>
</tbody>
</table>

MASA

<table>
<thead>
<tr>
<th></th>
<th>kg</th>
<th>g</th>
<th>slug</th>
<th>una</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kg</td>
<td>1</td>
<td>1000</td>
<td>0.06852</td>
<td></td>
</tr>
<tr>
<td>1 g</td>
<td>0.001</td>
<td>1</td>
<td>0.0000685</td>
<td></td>
</tr>
<tr>
<td>1 slug</td>
<td>14.59</td>
<td>14590</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 una</td>
<td>1.66 x 10^27</td>
<td>1.66 x 10^24</td>
<td>1.137 x 10^24</td>
<td>1</td>
</tr>
</tbody>
</table>

TIEMPO

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>min</th>
<th>h</th>
<th>día</th>
<th>año</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 s</td>
<td>1</td>
<td>0.01667</td>
<td>0.0002778</td>
<td>0.00001157</td>
<td>3.169 x 10^6</td>
</tr>
<tr>
<td>1 min</td>
<td>60</td>
<td>1</td>
<td>0.01667</td>
<td>0.0006994</td>
<td>0.000001901</td>
</tr>
<tr>
<td>1 h</td>
<td>3600</td>
<td>60</td>
<td>1</td>
<td>0.04167</td>
<td>0.0001141</td>
</tr>
<tr>
<td>1 día</td>
<td>86400</td>
<td>1440</td>
<td>24</td>
<td>1</td>
<td>0.002738</td>
</tr>
<tr>
<td>1 año</td>
<td>31560000</td>
<td>525900</td>
<td>8766</td>
<td>365.2</td>
<td>1</td>
</tr>
</tbody>
</table>
VELOCIDAD

<table>
<thead>
<tr>
<th></th>
<th>m/s</th>
<th>cm/s</th>
<th>pie/s</th>
<th>Km/h</th>
<th>milla/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m/s</td>
<td>1</td>
<td>100</td>
<td>3.281</td>
<td>3.61</td>
<td>2.237</td>
</tr>
<tr>
<td>1 cm/s</td>
<td>0.01</td>
<td>1</td>
<td>0.03281</td>
<td>0.036</td>
<td>0.02237</td>
</tr>
<tr>
<td>1 pie/s</td>
<td>0.3048</td>
<td>30.48</td>
<td>1</td>
<td>1.09728</td>
<td>0.6818</td>
</tr>
<tr>
<td>1 km/h</td>
<td>0.2777</td>
<td>27.77</td>
<td>0.9111</td>
<td>1</td>
<td>0.621</td>
</tr>
<tr>
<td>1 milla/h</td>
<td>0.4470</td>
<td>44.70</td>
<td>1.467</td>
<td>1.609</td>
<td>1</td>
</tr>
</tbody>
</table>

FUERZA

<table>
<thead>
<tr>
<th></th>
<th>dina</th>
<th>nw</th>
<th>libra</th>
<th>poundal</th>
<th>gm-f</th>
<th>Kg-f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 dina</td>
<td>1</td>
<td>10^8</td>
<td>2.248 x 10^4</td>
<td>7.233 x 10^3</td>
<td>0.00102</td>
<td>1.020 x 10^-1</td>
</tr>
<tr>
<td>1 nw</td>
<td>10^9</td>
<td>1</td>
<td>2.248</td>
<td>7.233</td>
<td>102</td>
<td>0.102</td>
</tr>
<tr>
<td>1 libra</td>
<td>4.448 x 10^8</td>
<td>4.448</td>
<td></td>
<td>3.108 x 10^2</td>
<td>1</td>
<td>14.1</td>
</tr>
<tr>
<td>1 poundal</td>
<td>1.383 x 10^10</td>
<td>0.1363</td>
<td>3.108</td>
<td>1</td>
<td>141.1</td>
<td>0.0141</td>
</tr>
<tr>
<td>1 gm-f</td>
<td>980.7</td>
<td>8.607 x 10^5</td>
<td>2.265 x 10^5</td>
<td>0.07098</td>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>1 kg-f</td>
<td>9.807 x 10^10</td>
<td>9.807</td>
<td>2.265</td>
<td>0.07098</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

TRABAJO - ENERGÍA - CALOR

<table>
<thead>
<tr>
<th></th>
<th>eV</th>
<th>caloría</th>
<th>BTU</th>
<th>KW.h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 joule</td>
<td>6.242 x 10^{18}</td>
<td>0.2389</td>
<td>0.0009481</td>
<td>2.778 x 10^{-7}</td>
</tr>
<tr>
<td>1 ergio</td>
<td>6.242 x 10^{18}</td>
<td>2.389 x 10^{8}</td>
<td>9.481 x 10^{11}</td>
<td>2.778 x 10^{-14}</td>
</tr>
<tr>
<td>1 libra.pie</td>
<td>8.464 x 10^{18}</td>
<td>0.3239</td>
<td>0.001285</td>
<td>3.766 x 10^{-7}</td>
</tr>
<tr>
<td>1 eV</td>
<td>1</td>
<td>3.627 x 10^{20}</td>
<td>1.519 x 10^{-22}</td>
<td>4.45 x 10^{-8}</td>
</tr>
<tr>
<td>1 caloría</td>
<td>2.613 x 10^{19}</td>
<td>1</td>
<td>0.003968</td>
<td>1.163 x 10^{-6}</td>
</tr>
<tr>
<td>1 BTU</td>
<td>6.585 x 10^{21}</td>
<td>252</td>
<td>1</td>
<td>2.93 x 10^{-4}</td>
</tr>
<tr>
<td>1 kW.h</td>
<td>2.247 x 10^{25}</td>
<td>860100</td>
<td>341.3</td>
<td>1</td>
</tr>
</tbody>
</table>

PRESIÓN

<table>
<thead>
<tr>
<th></th>
<th>Pascal (nw/m²)</th>
<th>dina/cm²</th>
<th>atmósfera</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pascal (nw/m²)</td>
<td>1</td>
<td>10</td>
<td>9.869 x 10^6</td>
</tr>
<tr>
<td>1 dina/cm²</td>
<td>0.1</td>
<td>1</td>
<td>9.869 x 10^7</td>
</tr>
<tr>
<td>1 atmósfera</td>
<td>1.013 x 10^6</td>
<td>1.013 x 10^6</td>
<td>1</td>
</tr>
<tr>
<td>1 cm Hg</td>
<td>1.333 x 10^5</td>
<td>1.333 x 10^5</td>
<td>1.316 x 10^2</td>
</tr>
<tr>
<td>1 libra/pul²</td>
<td>6.895 x 10^4</td>
<td>6.895 x 10^4</td>
<td>6.805 x 10²</td>
</tr>
<tr>
<td>1 libra/pie²</td>
<td>47.88</td>
<td>4.788 x 10^3</td>
<td>4.725 x 10^4</td>
</tr>
</tbody>
</table>
POTENCIA

<table>
<thead>
<tr>
<th></th>
<th>Watt</th>
<th>HP</th>
<th>Pie.librafuerza/s</th>
<th>Btu/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 watt</td>
<td>1</td>
<td>0.00134</td>
<td>0.738</td>
<td>3.413</td>
</tr>
<tr>
<td>1 HP</td>
<td>746</td>
<td>1</td>
<td>550</td>
<td>2551</td>
</tr>
<tr>
<td>1 pie.librafuerza/s</td>
<td>1.355</td>
<td>0.00181</td>
<td>1</td>
<td>4.63</td>
</tr>
<tr>
<td>1 Btu/h</td>
<td>0.293</td>
<td>3.92 x 10^{-4}</td>
<td>0.216</td>
<td>1</td>
</tr>
</tbody>
</table>

TRABAJO - ENERGÍA - CALOR

<table>
<thead>
<tr>
<th></th>
<th>joule</th>
<th>ergio</th>
<th>libra.pie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 joule</td>
<td>1</td>
<td>10000000</td>
<td>0.7376</td>
</tr>
<tr>
<td>1 ergio</td>
<td>0.0000001</td>
<td>1</td>
<td>0.000000007376</td>
</tr>
<tr>
<td>1 libra.pie</td>
<td>1.356</td>
<td>13560000</td>
<td>1</td>
</tr>
<tr>
<td>1 eV</td>
<td>1.602 x 10^{-19}</td>
<td>1.602 x 10^{-19}</td>
<td>1.182 x 10^{-19}</td>
</tr>
<tr>
<td>1 caloria</td>
<td>4.186</td>
<td>41860000</td>
<td>3.087</td>
</tr>
<tr>
<td>1 BTU</td>
<td>1055</td>
<td>1.055 x 10^{12}</td>
<td>777.9</td>
</tr>
<tr>
<td>1 kW.h</td>
<td>3600000</td>
<td>3.6 x 10^{13}</td>
<td>26550000</td>
</tr>
</tbody>
</table>

PRESIÓN

<table>
<thead>
<tr>
<th></th>
<th>Cm Hg</th>
<th>libra/pulgado</th>
<th>libra/pie²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pascal (nw/m²)</td>
<td>7.501 x 10^{-4}</td>
<td>1.450 x 10^{-4}</td>
<td>2.089 x 10²</td>
</tr>
<tr>
<td>1 dina/cm²</td>
<td>7.501 x 10^{5}</td>
<td>1.450 x 10^{5}</td>
<td>2.089 x 10²</td>
</tr>
<tr>
<td>1 atmósfera</td>
<td>76</td>
<td>14.70</td>
<td>2.116 x 10³</td>
</tr>
<tr>
<td>1 cm Hg</td>
<td>1</td>
<td>0.1943</td>
<td>27.85</td>
</tr>
<tr>
<td>1 libra/pulgado</td>
<td>5.171</td>
<td>1</td>
<td>144</td>
</tr>
<tr>
<td>1 libra/pie²</td>
<td>3.591 x 10^{-8}</td>
<td>6.944 x 10^{-9}</td>
<td>1</td>
</tr>
<tr>
<td>Año</td>
<td>Nombre</td>
<td>Trabajo</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>1901</td>
<td>Wilhelm Konrad Roentgen</td>
<td>Descubrimiento de los rayos X</td>
<td></td>
</tr>
<tr>
<td>1902</td>
<td>Hendrick Antón Lorentz</td>
<td>Influencia del magnetismo en los fenómenos de la radiación.</td>
<td></td>
</tr>
<tr>
<td>1903</td>
<td>Antoine Henri Becquerel, Pierre Curie, Marie Curie</td>
<td>Descubrimiento de la radiactividad espontánea y fenómenos de la radiación.</td>
<td></td>
</tr>
<tr>
<td>1904</td>
<td>John William Strutt (Lord Rayleigh)</td>
<td>Densidades de los gases más importantes y descubrimiento del argón.</td>
<td></td>
</tr>
<tr>
<td>1905</td>
<td>Philipp Eduard Antón L.</td>
<td>Rayos catódicos</td>
<td></td>
</tr>
<tr>
<td>1906</td>
<td>Joseph John Thompson</td>
<td>Conducción de la electricidad en los gases.</td>
<td></td>
</tr>
<tr>
<td>1907</td>
<td>Alberic Abraham Michelson</td>
<td>Instrumentos ópticos de precisión.</td>
<td></td>
</tr>
<tr>
<td>1908</td>
<td>Gabriel Lipman</td>
<td>Reproducción de colores fotográficamente basado en los fenómenos de interferencia.</td>
<td></td>
</tr>
<tr>
<td>1909</td>
<td>Guglielmo Marconi, Carl Ferdinand Braun</td>
<td>Telegrafía inalámbrica.</td>
<td></td>
</tr>
<tr>
<td>1910</td>
<td>Johannes Diderik Van der Waals</td>
<td>Ecualación de estado para los gases y los líquidos.</td>
<td></td>
</tr>
<tr>
<td>1911</td>
<td>Wilhelm Wien</td>
<td>Descubrimiento de las leyes que gobiernan la radiación del calor.</td>
<td></td>
</tr>
<tr>
<td>1912</td>
<td>Nils Gustaf Dalén</td>
<td>Invento de los reguladores automáticos para usarse junto con los acumuladores de gas para iluminar los faros y las boyas.</td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>Heike Kamerlingh Onnes</td>
<td>Investigación sobre las propiedades de la materia a bajas temperaturas.</td>
<td></td>
</tr>
<tr>
<td>1914</td>
<td>Max Von Laue</td>
<td>Descubrimiento de la difracción de los rayos X en los cristales.</td>
<td></td>
</tr>
<tr>
<td>1915</td>
<td>William Henry Bragg, William Lawrence Bragg</td>
<td>Análisis de la estructura cristalina por medio de los rayos X.</td>
<td></td>
</tr>
<tr>
<td>1917</td>
<td>Charles Glover Barkla</td>
<td>Descubrimiento de los rayos X característicos de los elementos.</td>
<td></td>
</tr>
<tr>
<td>1918</td>
<td>Max Planck</td>
<td>Descubrimiento de los cuantos de energía.</td>
<td></td>
</tr>
<tr>
<td>1919</td>
<td>Johannes Stark</td>
<td>Descubrimiento del efecto Doppler en los rayos canal y la separación de las líneas espectrales en los campos eléctricos.</td>
<td></td>
</tr>
<tr>
<td>1920</td>
<td>Charles Eduard Guillaume</td>
<td>Servicio a las mediciones de precisión en física a través de su descubrimiento de las anomalías en las aleaciones de acero-ríquen.</td>
<td></td>
</tr>
<tr>
<td>1921</td>
<td>Albert Einstein</td>
<td>Descubrimiento de la ley del efecto fotoeléctrico.</td>
<td></td>
</tr>
<tr>
<td>1922</td>
<td>Niels Bohr</td>
<td>Investigación del modelo del átomo y su radiación.</td>
<td></td>
</tr>
<tr>
<td>1923</td>
<td>Robert Andrews Millikan</td>
<td>Medición de la carga del electrón y el estudio experimental del efecto fotoeléctrico.</td>
<td></td>
</tr>
<tr>
<td>1924</td>
<td>Karl Manne Georg Siegbahn</td>
<td>Investigación y descubrimiento en la espectroscopía de los rayos X.</td>
<td></td>
</tr>
</tbody>
</table>
1925 James Franck Gustav Hertz Descubrimiento del efecto Franck-Hertz en el choque electrón-atomo.
1926 Jean Baptiste Perrin Investigación del movimiento browniano para validar la estructura discontinua de la materia.
1927 Arthur Holly Compton Descubrimiento del efecto Compton
1928 Owen Williams Richardson Investigación sobre fenómenos terciomagnéticos y los electrones emitidos por metales calientes.
1929 Prince Louis Victor de Broglie Descubrimiento de la naturaleza ondulatoria de los electrones.
1930 Chandrashekara Venkata Raman Investigación sobre la dispersión de la luz.
1932 Werner Heisenberg Creación de la mecánica cuántica
1933 Erwin Schrödinger Desarrollo de la mecánica ondulatoria y la mecánica cuántica relativista.
1935 James Chadwick Descubrimiento del neutrón.
1936 Victor Franz Hess Descubrimiento de la radiación cósmica y el descubrimiento del positrón.
1937 Clinton Joseph Davison Investigación sobre difracción de electrones por cristales.
George Paget Thomson
1938 Enrico Fermi Producción de elementos radiactivos mediante iradiación con neutrones.
1939 Ernest Orlando Lawrence Invento y desarrollo del ciclotrón.
1943 Otto Stern Contribución y desarrollo del método de los rayos moleculares y su descubrimiento del momento magnético del próton.
1944 Isidor Isaac Rabi Descubrimiento de la resonancia magnética nuclear en haces atómicos y moleculares.
1945 Wolfgang Pauli Descubrimiento del principio de exclusión.
1946 Percy Williams Bridgman Invento del aparato para producir presiones extremadamente altas.
1947 Edward Victor Appleton Investigación de la ionosfera.
1948 Patrick Maynard Stuart Blackett Investigación de la física nuclear con fotografías con la cámara de niebla y radiación cósmica.
1949 Hideki Yukawa Predicción de la existencia de los mesones.
1950 Cecil Frank Powell Método para estudiar los rayos cósmicos con emulsiones fotográficas.
1951 John Douglas Cockcroft Transmutación de núcleos en un acelerador.
Ernest Sinton Walton
1952 Felix Bloch Edward Mills Purcell Descubrimiento de la resonancia magnética nuclear en líquidos y gases.
1953 Fritz Zernike Invento del microscopio de contraste de fases.
1954 Max Born Walter Bothe Interpretación de la función de onda como una probabilidad en el desarrollo de la mecánica cuántica. Método para estudiar partículas subatómicas.
1955 Willis Eugene Lamb Polykarp Kusch Descubrimiento de la estructura fina del átomo de hidrógeno. Determinación de precisión del momento magnético del electrón.
1956 William Shokley John Bardeen Walter Houser Brittain Investigación sobre semiconductores y por el efecto del transistor.
Apéndice

1957 Chen Ning Yang, Tsung Dao Lee
1958 Pavel Aleksejevic Cerenkov, Ilja Michajlovik Frank, Igor Evgen'evic Tamm
1959 Emilio Gino Segre, Owen Chamberlain
1960 Donald Arthur Glaser
1961 Robert Hofstadter, Rudolf Ludwig Mössbauer
1962 Lev Davidovic Landau
1963 Eugene P. Wigner, Maria Goepepért Mayer, J. Hans D. Jensen
1964 Charles H Townes, Nikolai G Basov, Alexander M Prochorov
1965 Si Itiro Tomonaga, Julian Schwinger, Richard P. Feynman
1966 Alfred Kastler
1967 Hans Albrecht Bethe, Luis W Alvarez
1968 Murria Dell-Mann
1969 Hannes Alén, Louis Néel
1970 John Bardeen, Leon N Cooper, J. Robert Schrieffer
1971 Dennis Gabor
1972 Leo Esaki, Ivar Giaever, Brian D Josephson
1973 Anthony Hewish, Martin Ryle
1974 Aage Bohr, Ben Mottelson, James Rainwater
1975 Burton Richter, Samuel Chao Chung Ting
1976 Philip Warren Anderson, Nevill Francis Mott, John Hasbrouck Van Vleck
1978 Peter L Kapitza, Arno A Penzias, Robert Woodrow Wilson

Predicción de que la paridad no se conserva en el descamamiento beta.
Descubrimiento e interpretación del efecto Cerenkov.
Descubrimiento del antiprotón.
Descubrimiento del efecto Mössbauer.
Contribución a la teoría del núcleo atómico y las partículas elementales. Descubrimiento de la estructura de capas del núcleo.
Investigación en el campo de la electrónica cuántica y desarrollo de máseres.
Descubrimiento en la electrónidinámica cuántica.
Descubrimiento y desarrollo de métodos ópticos para el estudio de la resonancia Hertziana en los átomos.
Contribución a la teoría de las reacciones nucleares.
Descubrimiento de estados de resonancia de las partículas elementales.
Clasificación de las partículas elementales.
Desarrollo de la teoría magnetohidrodinámica.
Descubrimiento del antiferromagnetismo y ferromagnetismo.
Descubrimiento de los principios de holografía.
Desarrollo de la teoría de la superconductividad.
Descubrimiento del efecto túnel en semiconductores.
Descubrimiento del efecto túnel en superconductores.
Predicción técnica de las propiedades de una supercorriente a través de una barrera de túnel.
Descubrimiento de los púlsares. Investigación en radioastronomía.
Descubrimiento de que algunos núcleos toman formas asimétricas.
Descubrimiento de la partícula J.
Investigación de los sólidos con la mecánica cuántica.
Descubrimiento de la radiación de fondo cósmica. Investigación del helio líquido.
Apéndice

1979 Sheldon Lee Lashow
Vaduz Salam
Steven Weinberg
Descubrimiento de la teoría de unificación de las fuerzas débiles y electromagnéticas.

1980 James W Cronin
Val L. Fitch
Descubrimiento de la violación de la paridad de carga.

1981 Nicolaas Bloembergen
Arthur Leonard Schawlow
Kai M. Siegbahn
Contribución al desarrollo de la espectroscopia láser.

1982 Kenneth Geddes Wilson
Contribución a la espectroscopia electrónica de alta resolución.

1983 Subrahmanyan Chandrasekhar
William A. Fowler
Carlo Rubbia
Simón Van der Meer
Descubrimiento de las partículas de campo W y Z.

1985 Klaus Von Klitzing
Descubrimiento de la resistencia Hall cuantizada.

1986 Ernest Ruska
Gerd Binnig
Heinrich Rohrer
Invento del microscopio electrónico. Invento del microscopio electrónico de barrido por efecto túnel.

1987 Karl Alex Müller
J. Georg Bednorz
Leon M. Lederman
Melvin Schwartz
Descubrimiento de una nueva clase de superconductores.

1988 Hans G. Dehmelt
Wolfgang Paul
Jack Steinberger
Norman F. Ramsey
Experimentos con haces de neutros y el descubrimiento del neutrino del muón.

1989 Hans G. Dehmelt
Wolfgang Paul
Norman F. Ramsey
Descubrimiento de técnicas para atrapar átomos individuales.

1990 Richard E. Taylor
Jerome I. Friedman
Henry W. Kendall
Descubrimiento de evidencias de ondas gravitacionales.

1991 Pierre Gilles de Gennes
Descubrimiento respecto al ordenamiento de las moléculas en sustancias como los cristales líquidos, polímeros y superconductores.

1992 George Charpak
Clifford G. Schull
Martin Perl
Frederick Reiner
Investigación de la dispersión de neutrones.

1993 Russel Hulse
Joseph Taylor
Descubrimiento del lepton tau. Detección del neutrino.

1994 Bertram N. Stockhouse
Clifford G. Schull
David M. Lee
Douglas O. Osheroff
Robert C. Richardson
Expresiones sobre el fenómeno de la superfluidez en el isótopo de helio-3.

1995 Steven Chu
Claude Cohen-Tannoudji
William D. Phillips
Descubrimiento de un nuevo fluido cuántico con excitaciones fraccionadamente cargadas.

1996 Martin Perl
Frederick Reiner
David M. Lee
Douglas O. Osheroff
Robert C. Richardson

1997 Steven Chu
Claude Cohen-Tannoudji
William D. Phillips

1998 Robert B. Laughlin
Horst L. Störner
Daniel C. Tsui
Descubrimiento de un nuevo fluido cuántico con excitaciones fraccionadamente cargadas.

359
<table>
<thead>
<tr>
<th>Año</th>
<th>Premios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Hoof Gerardus</td>
</tr>
<tr>
<td></td>
<td>Veltman Martinus</td>
</tr>
<tr>
<td>2000</td>
<td>Zhores Alferov</td>
</tr>
<tr>
<td></td>
<td>Herbert Kroemer</td>
</tr>
<tr>
<td></td>
<td>Jack Kilby</td>
</tr>
<tr>
<td>2001</td>
<td>Eric A. Cornell</td>
</tr>
<tr>
<td></td>
<td>Wolfgang Ketterle</td>
</tr>
<tr>
<td></td>
<td>Carl E. Wieman</td>
</tr>
<tr>
<td>2002</td>
<td>Raymond Davis Jr.</td>
</tr>
<tr>
<td></td>
<td>Masao Koshihisa</td>
</tr>
<tr>
<td></td>
<td>Riccardo Giacconi</td>
</tr>
<tr>
<td>2003</td>
<td>Alexei Abrikosov</td>
</tr>
<tr>
<td></td>
<td>Vitaly L. Ginzburg</td>
</tr>
<tr>
<td></td>
<td>Anthony J. Leggett</td>
</tr>
<tr>
<td>2004</td>
<td>David Politzer</td>
</tr>
<tr>
<td></td>
<td>Frank Wilczek</td>
</tr>
<tr>
<td></td>
<td>David Gross</td>
</tr>
<tr>
<td>2005</td>
<td>Roy J. Glauber</td>
</tr>
<tr>
<td></td>
<td>John L. Hall</td>
</tr>
<tr>
<td></td>
<td>Theodor Wolfgang Hänisch</td>
</tr>
<tr>
<td>2006</td>
<td>John C. Mather</td>
</tr>
<tr>
<td></td>
<td>George F. Smoot</td>
</tr>
<tr>
<td>2007</td>
<td>Albert Fert</td>
</tr>
<tr>
<td></td>
<td>Peter Grünberg</td>
</tr>
<tr>
<td>2008</td>
<td>Makoto Kobayashi</td>
</tr>
<tr>
<td></td>
<td>Toshiohde Maekawa</td>
</tr>
<tr>
<td></td>
<td>Yoichiro Nambu</td>
</tr>
<tr>
<td>2009</td>
<td>Charles K. Kao</td>
</tr>
<tr>
<td></td>
<td>Willard Sterling Boyle</td>
</tr>
<tr>
<td></td>
<td>George E. Smith</td>
</tr>
<tr>
<td>2010</td>
<td>Andre Geim</td>
</tr>
<tr>
<td></td>
<td>Konstantin Novoselov</td>
</tr>
<tr>
<td>2011</td>
<td>Saul Perlmutter</td>
</tr>
<tr>
<td></td>
<td>Brian P. Schmidt</td>
</tr>
<tr>
<td></td>
<td>Adam G. Press</td>
</tr>
</tbody>
</table>

Dilucidar la estructura cuántica de interacciones electrodébiles en física.

Desarrollo de microcomponentes electrónicos. Invención del chip

Logro de la condensación de Bose-Einstein en gases de átomos alcalinos.

Investigaciones en astrofísica, detección de neutrinos cósmicos.

Investigaciones sobre superconductividad y superfluidez.

Investigación sobre las partículas subatómicas Quarks.

Investigación sobre la teoría cuántica de coherencia óptica.

Investigación en el desarrollo de la espectroscopía de precisión basada en láser.

Descubrimiento de la forma de cuerpo negro y la anisotropía de la radiación cósmica de fondo.

Investigación y aplicaciones de de la magneto-resistencia gigante.

Identificaron tres familias de quarks, las macropartículas que forman la materia. Descubrimiento del mecanismo de la simetría rota espontánea.

Investigaciones relacionadas con el desarrollo de las comunicaciones por fibra óptica y de la transmisión de imágenes por vía digital. Invención del "circuito semiconductor de imágenes", más conocido como sensor CCD.

Trabajos pioneros en el desarrollo del grafeno, un material bidimensional útil para el desarrollo de dispositivos electrónicos flexibles y más eficientes

Descubrimiento de la expansión acelerada del universo.
BIBLIOGRAFÍA

SEARS Francis, ZEMANSKY Mark, Física, Editorial Aguilar, 1973
Bibliografía

BUECHE Frederick, Física general, Editorial Mc Graw Hill, Segunda edición, 1988

HEWITT Paul, Conceptos de Física, Editorial Limusa, 1997
