Bicuspid Aortic Valve

Nuran Yener, PhD, G. Levent Oktar, MD, Dilek Erer, MD, M. Murat Yardımcı, MD, and Ali Yener, MD

The bicuspid aortic valve is a common congenital cardiac anomaly, having an incidence in the general population of 0.9% to 2.0% and a frequency of 54% in all patients aged >15 years with valvular aortic stenosis. In most cases it remains undetected until infective endocarditis or calcification supervenes. The bicuspid aortic valve may function normally throughout life, may develop progressive calcification and stenosis or may develop regurgitation with or without infection. The association of the bicuspid aortic valve with dissection of the aorta is also common. The recognition of the bicuspid valve in patients with aortic valve disease remains an important challenge to the clinician, whereas preoperative knowledge of valve morphology would be helpful in planning the surgery. Antibiotic prophylaxis is also recommended in such patients, since these valves are likely to become the most important intrinsic cardiac predisposition for infective endocarditis with the virtual disappearance of rheumatic fever in developed countries. (Ann Thorac Cardiovasc Surg 2002; 8: 264–7)

Key words: bicuspid aortic valve, aortic stenosis, aortic regurgitation, infective endocarditis, aortic dissection

Introduction

The bicuspid aortic valve is a common congenital cardiac anomaly, having an incidence in the general population of 0.9 to 2.0% and a frequency of 54% of all patients aged >15 years with valvular aortic stenosis. It was first described as a pathological curiosity in 1844 by Paget; Peacock recognized its liability to calcific stenosis in 1866; and in 1886, Osler first associated it with infective endocarditis. The association of bicuspid aortic valve with aortic stenosis, aortic regurgitation, dissection of the aorta and infective endocarditis causes this anomaly to be an important challenge to the clinician.

From Department of Anatomy, Hacettepe University, Faculty of Medicine, Division of Cardiovascular Surgery, Dr. M. Ülker Emergency and Traumatology Hospital, Department of Thoracic and Cardiovascular Surgery, Gazi University, Faculty of Medicine, Ankara, Turkey

Received January 16, 2002; accepted for publication January 28, 2002.

Reprint requests to G. Levent Oktar, MD: Kızılirmak Mah. 8. Sokak, Halkbank Sitesi C Block No. 7/23, 06520 Balgat, Ankara, Turkey.

Morphology

The leaflets of a bicuspid aortic valve are usually of unequal size with a raphe or false commissure apparent in the larger of the leaflets (Fig. 1). Histological examination shows no valve tissue in the raphe. The leaflets are usually oriented right and left with the true commissures oriented anterior and posterior, but may also be in an anteroposterior orientation. Most commonly, the right and left coronary leaflets comprise the larger, fused leaflet and the noncoronary leaflet is separate with true commissures. The free edges of a bicuspid valve are more straight than rounded producing limited mobility. The coronary arteries usually arise in front of the cusp with a raphe. Stenosis usually develops in bicuspid valves containing no redundant cusp tissue, and incompetence often in valves in which redundancy and prolapse are prominent. Calcification increases with age and is largely confined to the raphe and base of the cusp, as it is in degenerative valves.

Bicuspid aortic valves have been reported in 20-85% of cases of coarctation of the aorta and in 27% of cases of
interrupted aortic arch.

Left coronary artery dominance is more common in patients with a bicuspid aortic valve (29-56.8%) and in 90% of cases, the left main coronary artery is less than 5 mm in length. The ignorance of these associations may cause an inadequate myocardial preservation and an increased risk of myocardial infarction.

Genetics

The genetics of bicuspid aortic valves have been studied by several investigators. These valves may run in families in a multifactorial inheritance pattern or occasionally in an autosomal dominant one. Emanuel et al. have found a minimum family incidence of 14.6% of bicuspid aortic valves. In a recent study of first degree relatives of individuals with bicuspid aortic valves, the prevalence of this defect was found to be 9.1%, which was well above the estimated population prevalence of 1-2%. Although these valves are more common in males than females by a factor of 2:1 in the general population, the prevalence was equal in males and females in families having more than one affected individual.

Diagnosis

The recognition of the bicuspid aortic valve in patients with aortic valve disease remains an important challenge to the clinician. The reliability of the diagnosis has been significantly improved by the introduction of cross-sectional and Doppler echocardiography. Diagnosis is based on the demonstration of two cusps and two commissures during short axis visualisation. Supportive features include cusp redundancy and eccentric valve closure, and a single coaptation line between the cusps during diastole. Although in patients with adequate transthoracic echocardiograms, a sensitivity and specificity of 78 and 96%, respectively, for the identification of a bicuspid aortic valve have been reported, in up to 25% of patients, morphology of the aortic valve cannot be determined by transthoracic echocardiography. In a recent study, Espinal and colleagues have reported their experience with transesophageal echocardiography shows a high degree of sensitivity and specificity for determining aortic valve morphology, especially when using the multiplane approach.

Natural History and Complications

The congenitally bicuspid valve may function normally throughout life, may develop progressive calcification and stenosis or may develop regurgitation with or without infection. The natural history of this valve is of calcification and is the most common cause of isolated aortic stenosis. The congenital variety of aortic stenosis is the most common, and accounts for two-thirds of the nonrheumatic patients. Severely stenosed bicuspid aortic valves are very rigid because of fibrosis and heavy calcification, but are not narrowed. Both calcification and fibrosis are age related. Most patients with a bicuspid aortic valve have abnormal valvular calcification by the age of 20, and nearly all show calcification by 30 years.
of age. Stenosis progresses more rapidly (27 mmHg per decade) if the cusps are asymmetrical in size and in the anteroposterior location. Patients with aortic stenosis secondary to a bicuspid aortic valve were found to require aortic valve replacement five years before those with a tricuspid valve.

The incidence of aortic regurgitation secondary to bicuspid aortic valves was reported to be 1.5 to 3%. It may occur in isolation, usually as a result of prolapse of the larger of the cusps, but also in association with aortic root dilatation, coarctation of the aorta, or infective endocarditis. Pachulski et al. found that the aortic root diameter was significantly larger among patients with bicuspid aortic valves than among normal controls, even in the absence of hemodynamically significant aortic stenosis. Disruption or dissolution of elastic tissue within the upper aortic ring causes root dilatation and aortic regurgitation. Infective endocarditis is responsible for between 43 and 60% of cases of severe aortic regurgitation in patients with a bicuspid aortic valve, the result of cusp perforation in the majority of the cases.

Infective endocarditis is a well-recognized complication of a bicuspid aortic valve; autopsy evidence suggests that it occurs in 7-25% of cases and usually presents in the fourth and fifth decade of life, requiring major surgery in most cases, with significant mortality (9%). Bicuspid aortic valve endocarditis predominantly occurs in young adults and there is a strong male dominance (73-100%). The mean age in the adult series varies between 38 and 53 years. Staphylococci and viridans streptococci have accounted for nearly three-quarters of the cases, as in native valve endocarditis. Complications, especially heart failure and valvular or myocardial abscesses are common. Most patients require surgery, often on an emergency basis. Recent surgical series show that 25 to 54% of all infected aortic valves are bicuspid. Bicuspid aortic valves are likely to become the most important intrinsic cardiac predisposition for infective endocarditis with the virtual disappearance of rheumatic fever in the developed countries.

A bicuspid aortic valve is present in 7 to 13% of unselected cases of aortic dissection. The risk of dissection in patients with bicuspid aortic valves is reported to be nine times higher. Aortic dissection usually occurs in the presence of a normally functioning valve, but it may also occur with stenosed bicuspid aortic valves and following aortic valve replacement, at a site remote from surgical access to the valve. Abnormalities in the ascending aorta of the patients with bicuspid aortic valves, specifically premature medial layer smooth muscle cell apoptosis, have been described, explaining the higher-than-expected prevalence of aortic dissection in these patients. Also morphometric studies show less elastic tissue in the aortas of bicuspid aortic valve patients. These findings may one day make it advisable to consider replacement of the ascending aorta when valve replacement is performed in the patient with a bicuspid aortic valve.

Conclusion

Congenital bicuspid aortic valves are common and in most cases remain undetected until infection or calcification supervenes. Aortic stenosis and regurgitation, infective endocarditis and aortic dissection are the most common complications. The recognition of the bicuspid valve in patients with aortic valve disease remains an important challenge to the clinician, whereas preoperative knowledge of valve morphology would be helpful in planning the surgery. Echocardiography should be undertaken in all young adults in whom murmurs are detected and possibly also in the first- and second-degree relatives of patients with known bicuspid aortic valves. Antibiotic prophylaxis for infective endocarditis is also recommended in such patients.

References