Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Maximal virtual schottky groups: explicit constructions

Hidalgo, Rubén A. (2011) Maximal virtual schottky groups: explicit constructions. Revista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 41-57 0034-7426 .

Texto completo

[img]
Vista previa
PDF
241kB
[img] HTML
9kB

URL oficial: http://revistas.unal.edu.co/index.php/recolma/arti...

Resumen

A Schottky group of rank $g$ is a purely loxodromic Kleinian group, with non-empty region of discontinuity, isomorphic to the free group of rank $g$.A virtual Schottky group is a Kleinian group $K$ containing a Schottky group $\Gamma$ as a finite index subgroup. In this case, let $g$ be the rank of $\Gamma$. The group $K$ is an elementary Kleinian group if and only if $g \in \{0,1\}$. Moreover, for each $g \in \{0,1\}$ and for every integer $n \geq 2$, it is possible to find $K$ and $\Gamma$ as above for which the index of $\Gamma$ in $K$ is $n$. If $g \geq 2$, then the index of $\Gamma$ in $K$ is at most $12(g-1)$. If $K$ contains a Schottky subgroup of rank $g \geq 2$ and index $12(g-1)$, then $K$ is called a maximal virtual Schottky group. We provide explicit examples of maximal virtual Schottky groups and corresponding explicit Schottky normal subgroups of rank $g \geq 2$ of lowest rank and index $12(g-1)$. Every maximal Schottky extension Schottky group is quasiconformally conjugate to one of these explicit examples. Schottky space of rank $g$, denoted by $\mathcal{S}_{g}$, is a finite dimensional complex manifold that parametrizes quasiconformal deformations of Schottky groups of rank $g$. If $g \geq 2$, then $\mathcal{S}_{g}$ has dimension $3(g-1)$. Each virtual Schottky group, containing a Schottky group of rank $g$ as a finite index subgroup, produces a sublocus in $\mathcal{S}_{g}$, called a Schottky strata. The maximal virtual Schottky groups produce the maximal Schottky strata. As a consequence of the results, we see that the maximal Schottky strata is the disjoint union of properly embedded quasiconformal deformation spaces of maximal virtual Schottky groups.

Tipo de documento:Artículo - Article
Palabras clave:Schottky groups, Kleinian groups, Automorphisms, Riemann surface, 30F10, 30F40
Unidad administrativa:Revistas electrónicas UN > Revista Colombiana de Matemáticas
Código ID:29896
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :30 Junio 2014 07:44
Ultima modificación:18 Agosto 2014 18:50
Ultima modificación:18 Agosto 2014 18:50
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox