Efecto de la Carga Dinámica en la Estabilidad de Tensión

Tesis de Maestría presentada por

Felipe Valencia Arroyave

Ante la
Facultad de Ingeniería y Arquitectura
De la
Universidad Nacional de Colombia
Sede Manizales

Como requisito para optar al grado de

Maestro en Ingeniería
Automatización Industrial

Directora
Rosa Elvira Correa Gutiérrez
Universidad Nacional de Colombia, Sede Medellín

Codirector
Juan Manuel Ramírez Arredondo
Centro de Investigación y Estudios Avanzados, Guadalajara, México

Manizales, Diciembre de 2008.
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introducción</td>
<td>14</td>
</tr>
<tr>
<td>2 Estado del Arte en el Modelamiento de la Carga</td>
<td>17</td>
</tr>
<tr>
<td>2.1 Introducción</td>
<td>17</td>
</tr>
<tr>
<td>2.2 Problemas Reportados en la Literatura</td>
<td>18</td>
</tr>
<tr>
<td>2.2.1 Modelamiento de la Carga</td>
<td>19</td>
</tr>
<tr>
<td>2.2.2 Análisis de Estabilidad de Sistemas de Potencia</td>
<td>22</td>
</tr>
<tr>
<td>2.2.3 Sistemas de Monitoreo y Operación</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Soluciones Reportadas en la Literatura</td>
<td>24</td>
</tr>
<tr>
<td>2.3.1 Modelamiento de la Carga</td>
<td>25</td>
</tr>
<tr>
<td>2.3.2 Análisis de Sistemas Eléctricos de Potencia</td>
<td>27</td>
</tr>
<tr>
<td>2.3.3 Sistemas de Monitoreo y Operación</td>
<td>28</td>
</tr>
<tr>
<td>2.4 Resumen</td>
<td>28</td>
</tr>
<tr>
<td>3 Modelamiento de Sistemas Dinámicos</td>
<td>30</td>
</tr>
<tr>
<td>3.1 Introducción</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Sistemas de Hamilton</td>
<td>32</td>
</tr>
<tr>
<td>3.3 Sistemas Disipativos de Hamilton de Puertos Controlados</td>
<td>33</td>
</tr>
<tr>
<td>3.4 Realización Disipativa de Hamilton de Sistemas Eléctricos de Potencia</td>
<td>35</td>
</tr>
<tr>
<td>3.4.1 Realización Disipativa de Hamilton Teniendo en Cuenta Demanda de Potencia Activa y Reactiva Constante</td>
<td>36</td>
</tr>
<tr>
<td>3.4.2 Realización Disipativa de Hamilton Teniendo en Cuenta el Comportamiento Dinámico de la Carga</td>
<td>39</td>
</tr>
<tr>
<td>3.5 Resumen</td>
<td>45</td>
</tr>
<tr>
<td>4 Estabilidad de Sistemas de Potencia</td>
<td>46</td>
</tr>
<tr>
<td>4.1 Introducción</td>
<td>46</td>
</tr>
<tr>
<td>4.2 Análisis de Bifurcaciones en Sistemas Eléctricos de Potencia</td>
<td>47</td>
</tr>
<tr>
<td>4.3 Estabilidad Total en Sistemas Eléctricos de Potencia</td>
<td>50</td>
</tr>
<tr>
<td>4.4 Resumen</td>
<td>52</td>
</tr>
<tr>
<td>5 Caso de Estudio</td>
<td>54</td>
</tr>
</tbody>
</table>
Lista de Figuras

Figura 1. Trabajos previos para determinar el efecto de la caga en la estabilidad de sistemas de potencia .. 15

Figura 2. Áreas de trabajo en el modelamiento de la carga 18

Figura 3. Clasificación de los problemas y soluciones reportadas en la literatura en el modelamiento de carga ... 29

Figura 4. Tendencias y paradigmas en el modelamiento de sistemas dinámicos .. 32

Figura 5. Clasificación de los sistemas de Hamilton 33

Figura 6. Respuesta dinámica de la carga ante una perturbación tipo escalón en el voltaje de alimentación .. 40

Figura 7. Herramientas para el análisis de estabilidad de sistemas dinámicos 53

Figura 8. Diagrama esquemático del sistema eléctrico de potencia de prueba 54

Figura 9. Diagrama de bloques del regulador automático de voltaje empleado en este trabajo .. 56

Figura 10. Diagrama de bloques del regulador de velocidad empleado en este trabajo .. 57

Figura 11. Circuito equivalente empleado para el modelamiento de los transformadores .. 57

Figura 11. Trayectoria del voltaje en el nodo que alimenta la carga dinámica cerca del límite de estabilidad del sistema de prueba 60

Figura 12. Comportamiento del voltaje en el nodo de carga 2 (ver figura 8) 61
Figura 13. Comportamiento del voltaje en el nodo de carga 3 (ver figura 8)61

Figura 14. Trayectoria del voltaje de alimentación de la carga dinámica respecto al valor propio asociado al comportamiento dinámico de esta carga (arriba). Comportamiento del valor propio a medida que la demanda de potencia reactiva incrementa (abajo). ...62

Figura 15. Comportamiento del voltaje de alimentación (arriba) y de la potencia reactiva demandada (abajo) en el nodo de carga 2 (ver figura 8).......................63

Figura 16. Comportamiento del voltaje de alimentación (arriba) y de la potencia reactiva demandada (abajo) en el nodo de carga 3 (ver figura 8).......................64

Figura 17. Voltaje en las terminales (arriba) y corriente de línea (centro) de la unidad de generación 1, cerca del punto de inestabilidad del nodo que alimenta la carga dinámica...65

Figura 18. Comportamiento de la potencia mecánica (arriba), el voltaje y la corriente de campo (centro y abajo respectivamente) del generador 1 respecto al comportamiento del valor propio asociado a la trayectoria del voltaje que alimenta la carga dinámica. ...66

Figura 19. Comportamiento de la potencia mecánica (arriba), el voltaje y la corriente de campo (centro y abajo respectivamente) del generador 2 respecto al comportamiento del valor propio asociado a la trayectoria del voltaje que alimenta la carga dinámica. ...67

Figura 20. Comportamiento de la potencia mecánica (arriba), el voltaje y la corriente de campo (centro y abajo respectivamente) del generador 3 respecto al comportamiento del valor propio asociado a la trayectoria del voltaje que alimenta la carga dinámica. ...68
Lista de Tablas

Tabla 1. Parámetros del regulador automático de voltaje y del sistema de desconexión por sobreexcitación de las unidades de generación78

Tabla 2. Parámetros del regulador de velocidad ...78

Tabla 3. Parámetros de las unidades de generación ..78

Tabla 4. Parámetros de las líneas de transmisión ..79

Tabla 5. Parámetros de los transformadores elevadores79

Tabla 6. Parámetros de los transformadores reductores80

Tabla 7. Parámetros del modelo dinámico de carga80

Tabla 8. Parámetros de las cargas estáticas ..80
Notación

\(\delta_i \): Ángulo del rotor del i-esimo generador [rad].

\(\omega_i \): Velocidad del rotor del i-esimo generador [rad/seg].

\(\omega_0 \): \(2\pi f_0 \) [rad/seg].

\(E_{q,i} \): Voltaje transitorio interno en el eje de cuadratura del i-esimo generador [pu].

\(E_{c,i} \): Voltaje de campo del i-esimo generador [pu] (entrada de control).

\(P_{m,i} \): Potencia mecánica del i-esimo generador [pu] (entrada de control).

\(P_{e,i} \): Potencia activa generada por el i-esimo generador [pu].

\(Q_{e,i} \): Potencia reactiva generada por el i-esimo generador [pu].

\(V_i \): Voltaje en terminales del i-esimo generador [pu].

\(\theta_i \): Ángulo del voltaje en terminales del i-esimo generador [rad].

\(V_k \): Voltaje en el k-esimo nodo de carga [pu].

\(\gamma_k \): Ángulo del voltaje en el k-esimo nodo de carga [rad].

\(x_{d,i} \): Reactancia transitoria en eje directo del i-esimo generador [pu].

\(x_{d,j} \): Reactancia en eje directo del i-esimo generador [pu].

\(M_i \): Coeficiente de inercia del i-esimo generador [s].

\(D_i \): Constante de amortiguamiento [pu].

\(\tau_{d0,i} \): Constante de tiempo transitoria en eje directo y en circuito abierto del i-esimo generador [s].

\(B_{ij} \): Susceptancia de la línea de transmisión que conecta el nodo \(i \) con el nodo \(j \).
P_{d_k}: Potencia activa demandada en el k-esimo nodo de carga [pu].

Q_{d_k}: Potencia reactiva demandada en el k-esimo nodo de carga [pu].

E_k: Energía cinética.

E_a: Energía potencial.

v'_{iq}: Voltaje en cuadratura sobre los devanados del estator de las unidades de generación [pu].

v'_{ds}: Voltaje en eje directo sobre los devanados del estator de las unidades de generación [pu].

v'_{0s}: Voltaje de secuencia cero sobre los devanados del estator de las unidades de generación [pu].

v'_{kq1}: Voltaje sobre el primer devanado amortiguador del rotor en cuadratura de las unidades de generación [pu].

v'_{kq2}: Voltaje sobre el segundo devanado amortiguador del rotor en cuadratura de las unidades de generación [pu].

v'_{sd}: Voltaje sobre el devanado de campo de las unidades de generación [pu].

v'_{sd}: Voltaje sobre el devanado amortiguador en eje directo de las unidades de generación [pu].

r_s: Resistencia del devanado del estator de las unidades de generación [pu].

r_{kq1}: Resistencia del primer devanado en cuadratura de las unidades de generación [pu].

r_{kq2}: Resistencia del segundo devanado en cuadratura de las unidades de generación [pu].

r_{sd}: Resistencia del devanado de campo de las unidades de generación [pu].

i'_{iq}: Corriente en cuadratura que circula por los devanados del estator de las unidades de generación [pu].
\(i_{ds} \): Corriente en eje directo que circula por los devanados del estator de las unidades de generación [pu].

\(i_{0s} \): Corriente de secuencia cero que circula por los devanados del estator de las unidades de generación [pu].

\(i_{kqi1} \): Corriente en cuadratura que circula por el primer devanado amortiguador del rotor de las unidades de generación [pu].

\(i_{kqi2} \): Corriente en cuadratura que circula por el segundo devanado amortiguador del rotor de las unidades de generación [pu].

\(i_{fd} \): Corriente que circula por el devanado de campo de las unidades de generación [pu].

\(i_{kd} \): Corriente que circula por el devanado amortiguador en eje directo de las unidades de generación [pu].

\(\psi_{dq} \): Flujo en cuadratura que atraviesa los devanados del estator de las unidades de generación [pu].

\(\psi_{ad} \): Flujo en eje directo que atraviesa los devanados del estator de las unidades de generación [pu].

\(\psi_{0d} \): Flujo de secuencia cero que atraviesa los devanados del estator de las unidades de generación [pu].

\(\psi_{kqi1} \): Flujo que atraviesa el primer devanado amortiguador del rotor en cuadratura de las unidades de generación [pu].

\(\psi_{kqi2} \): Flujo que atraviesa el segundo devanado amortiguador del rotor en cuadratura de las unidades de generación [pu].

\(\psi_{fd} \): Flujo que atraviesa el devanado de campo de las unidades de generación [pu].

\(\psi_{kd} \): Flujo que atraviesa el devanado amortiguador del rotor en eje directo de las unidades de generación [pu].

\(\gamma \): Constante de propagación de la onda de voltaje en las líneas de transmisión.

\(Z_c \): Impedancia característica de las líneas de transmisión.
\(d \): Longitud de la línea de transmisión [Km].

\(j \omega \): Representación en términos de la frecuencia del operador de Laplace \(s \).

\(\bar{V}_s \): Voltaje al inicio del tramo de línea modelado [pu].

\(\bar{I}_s \): Corriente al inicio del tramo de línea modelado [pu].

\(\bar{V}_R \): Voltaje al final del tramo de línea modelado [pu].

\(\bar{I}_R \): Corriente al final del tramo de línea modelado [pu].

\(R \): Resistencia de las líneas de transmisión [\(\Omega / km \)]

\(L \): Inductancia de las líneas de transmisión [\(H / km \)]

\(C \): Capacitancia de las líneas de transmisión [\(F / km \)]

\(G \): Conductancia de las líneas de transmisión [\(\Omega^{-1} / km \)]
Agradecimientos

Agradezco a:

- La profesora Rosa E. Correa Gutiérrez por la dirección de la tesis.

- Al profesor Juan Manuel Ramírez Arredondo, por todo el apoyo brindado durante mi pasantía en el Centro de Investigación y Estudios Avanzados del IPN, unidad Guadalajara, y por la oportunidad que me dio para trabajar nuevamente con él en febrero y marzo del presente año.

- Al profesor Jairo José Espinosa Oviedo por su disposición y ayuda durante la realización de este trabajo, y por abrirme una nueva puerta para seguir adelante con mi carrera de investigador.

- Al profesor Guillermo Mesa Betancur por mostrarme que la investigación no es un camino espinoso, sino que todo depende del equipo de trabajo con que uno cuente para hacer las cosas.

- A Hernán Darío Escobar Álvarez, Andrea Mesa Múnera y demás integrantes de la ERE Internacional, por su apoyo constante en las decisiones tomadas día a día desde que nos conocemos.

Finalmente agradezco especialmente a mi Madre, mi Hermana y demás integrantes de mi familia porque sin su apoyo este trabajo no habría sido posible.
Resumen

En este trabajo se propone una nueva realización disipativa de Hamilton para modelar sistemas eléctricos de potencia. Lo novedoso de esta realización es que tiene en cuenta el comportamiento dinámico de la carga. Para lograr esto se comenzó por identificar los problemas y soluciones reportadas en la literatura en lo referente al modelado de la carga, ya que esto ayudó a identificar un modelo apropiado para representar el comportamiento dinámico de la carga. Lo que se busca con esta nueva realización es tener un modelo de los sistemas eléctricos de potencia multimáquina que permita determinar cuál es el efecto del comportamiento dinámico de la carga en la estabilidad del sistema.

Como resultado de hacer esta realización, se obtuvo una nueva metodología para el análisis de estabilidad de sistemas eléctricos de potencia. Lo novedoso de esta metodología es que se basa en la aplicación de los conceptos de estabilidad de sistemas dinámicos de la teoría de control a los sistemas eléctricos de potencia. Además es una metodología general, es decir, es independiente de la topología del sistema eléctrico de potencia.

La metodología encontrada en este trabajo se basa en el análisis de bifurcaciones del sistema eléctrico de potencia multimáquina modelado como un sistema de Hamilton. Al hacer esto se encontraron condiciones que delimitan la región de estabilidad de los sistemas eléctricos de potencia cuando alimentan cargas que presentan un comportamiento dinámico cuando se perturba el voltaje que la alimenta.

Esta metodología fue aplicada a un sistema eléctrico de potencia multimáquina general y los resultados obtenidos fueron validados mediante simulación numérica obteniéndose los resultados esperados. Se utilizó como sistema de prueba el sistema de la Western Systems Coordinating Council, que posee nueve nodos, entre ellos tres de generación y tres de carga.
Abstract

In this work it is proposed a new dissipative Hamilton realization to model electric power systems. This realization is new because take into account dynamic load behavior. To make it possible, it was began to identifying literature reported problems and solutions in load modeling, to select an accurate dynamic load model. The new dissipative Hamilton realization helped to establish how affects dynamic load behavior system’s stability.

As a result, a new methodology to power system’s stability analysis was obtained. This methodology is new because is based in the application of dynamic systems analysis concepts, of the control theory, to stability analysis of power systems. Moreover is a general methodology, i.e., the methodology is independent of system’s topology.

The methodology found with this work is based in the bifurcation analysis of power systems modeled as Hamilton systems. This let to find stability boundary conditions of power system’s that feed dynamic loads. The methodology was applied to analyze a generic power system and the results were validated through numeric simulation, with good results. As benchmark system it was used the Western Systems Coordinating Council nine bus power system.
1 Introducción

En la actualidad los sistemas eléctricos de potencia se encuentran forzados a trabajar cada vez más cerca de sus límites de estabilidad debido al incremento en la demanda, las dificultades en la expansión de las redes de suministro eléctrico y al incremento en los intercambios de energía entre países con fines económicos [19]. Esta nueva condición de operación de las redes de transporte de energía ha generado la necesidad de analizar el comportamiento de los sistemas eléctricos de potencia cuando estos son perturbados, con el fin de determinar márgenes de estabilidad.

Sin embargo, para que las conclusiones obtenidas de los análisis permitan tomar decisiones acertadas en la planeación y operación de los sistemas de potencia, se requiere conocer el comportamiento dinámico de todos los elementos que los componen [2], [34], [42]. Por tal motivo, los investigadores han realizado esfuerzos en el modelado de los dispositivos involucrados en la generación, transmisión y distribución de potencia. Aunque se ha prestado poca atención al modelado de la carga, llegando al punto en que es un área en la que hay muchas incertidumbres [21], [2], [37], [13], [23], [35]. Tales incertidumbres han dificultado la determinación del efecto del comportamiento de la carga en la estabilidad de los sistemas de potencia [2], [12], [20], [22], [34], [36].

Un resultado de lo expuesto anteriormente es que no se cuenta con metodologías de análisis de estabilidad de sistemas eléctricos de potencia que consideren el efecto dinámico de sus componentes, en especial la carga. Esto se ve reflejado en los trabajos previos realizados con el fin de determinar el efecto del comportamiento de la carga en la estabilidad de los sistemas de potencia. Ellos se han orientado en dos vías:

1. Estabilidad de estado estable: llamada así porque se basa en la existencia de un punto de equilibrio y el análisis de estabilidad alrededor de este punto.
2. Estabilidad dinámica: llamada así porque se basa en el análisis de la evolución de las trayectorias del sistema a partir de una condición inicial dada.

En la primera vía, la carga se ha representado por su característica de demanda de potencia, tanto activa como reactiva, constante y se ha tomado como uno de los parámetros del sistema, permitiendo construir las características $P-V$ y $Q-V$ de diferentes tipos de sistemas para determinar sus límites de estabilidad [10], [45] y obtener indicadores que permiten predecir qué tan cerca se encuentra el sistema de su margen de estabilidad [16]. Además, partiendo del teorema de Thevenin, se ha relacionado la impedancia del sistema con la de la carga para determinar el punto de máxima transferencia de potencia.
En la segunda vía, diferentes elementos que conforman la carga en los sistemas de potencia se han modelado de forma dinámica y mediante simulación numérica se ha determinado cuál es su efecto en la estabilidad de los sistemas de potencia [46]. También se han hecho esfuerzos para aplicar la teoría de sistemas no lineales a los sistemas de potencia, especialmente la teoría de bifurcaciones, y herramientas de inteligencia artificial para determinar los márgenes de estabilidad [5], [15].

En la figura 1 se presenta un mapa conceptual que resume de lo expuesto anteriormente, en azul se muestran las áreas en que este trabajo hace énfasis.

Como solución, en esta tesis de maestría se propuso modelar los sistemas eléctricos de potencia como sistemas de múltiples partículas que interactúan entre sí, utilizando la formulación de los sistemas de Hamilton, con lo cual se obtuvo una forma de cuantificar su región de estabilidad. Adicionalmente se obtuvo una nueva metodología para el análisis de sistemas eléctricos de potencia como sistemas dinámicos y una aproximación matemática para describir regiones donde estos sistemas son estables ante perturbaciones basada en el teorema de estabilidad total presentado por Hahn en [15].

Este documento se encuentra organizado de la siguiente forma:

- En el primer capítulo se presenta el estado del arte en el modelamiento de la carga, en particular se presentan problemas y soluciones reportadas en la literatura.
- En el segundo capítulo se hace una introducción al modelamiento de sistemas dinámicos, se presenta el concepto de modelamiento mediante funciones de energía y se hace una aplicación al modelado de sistemas
de potencia considerando tanto demanda de potencia constante como comportamiento dinámico en la demanda de potencia.

- En el tercer capítulo se muestran algunas herramientas para el análisis de sistemas de potencia modelados mediante funciones de energía, en particular análisis de bifurcaciones y aplicación del teorema de estabilidad total presentado por Hahn en [15].
- En el cuarto capítulo se muestran los resultados de las simulaciones hechas para validar los resultados encontrados en los capítulos anteriores.
- En el quinto capítulo se dan a conocer las conclusiones de este trabajo y los trabajos futuros.
2 Estado del Arte en el Modelamiento de la Carga

2.1 Introducción

El modelamiento de la carga en los sistemas eléctricos de potencia es una necesidad para realizar diferentes estudios del comportamiento del sistema ya que la carga es uno de los elementos principales en el análisis de sistemas eléctricos de potencia, debido a que ella determina la transferencia de potencia entre los diferentes puntos de la red y a que los resultados del análisis de los sistemas de potencia dependen de las características de la carga, especialmente el análisis de estabilidad de tensión [2], [43], [35].

Dada la gran importancia del modelado de la carga, hacer una revisión bibliográfica y realizar el estado del arte de los modelos de carga es de vital importancia al realizar trabajos orientados al análisis de sistemas eléctricos de potencia ya que este trabajo facilita la selección de un modelo adecuado para el estudio que se está realizando.

Luego de hacer la revisión bibliográfica, se han encontrado dos tendencias definidas para modelar la carga:

1. modelamiento fenomenológico: mediante la agregación por componentes se modela el efecto agregado de todos los elementos que conforman la carga en un momento dado.
2. modelamiento empírico: mediante las técnicas de identificación de sistemas y a partir de datos experimentales se modela el comportamiento agregado de los elementos que conforman la carga.

Ambas alternativas son viables dependiendo de la complejidad del sistema y de la información con que se cuente, sin embargo la mayoría de los modelos que se encuentran reportados en la literatura son de base empírica ya que los modelos de base fenomenológica requieren de una mayor cantidad de información (esto se mostrará en las siguientes secciones de este capítulo).

Tanto los modelos fenomenológicos como los empíricos encontrados en la literatura pueden ser clasificados como dinámicos y estáticos, dependiendo si la relación entre las variables es de tipo diferencial o no. Esta clasificación es la que más influye en el tipo de análisis que se hace de los sistemas de potencia, en los resultados que se obtienen y en las decisiones para la planeación y operación de los sistemas de potencia (esto también se mostrará en las siguientes secciones de este capítulo). En la figura 2 se presentan los modelos de carga que se encuentran en la literatura, en azul se resaltan las áreas trabajadas al realizar este trabajo.
A pesar de los grandes esfuerzos que se han hecho para obtener un modelo de carga que representa su comportamiento de forma adecuada, aún este es un campo abierto para investigar pues los modelos con que se cuenta en su mayoría sólo son válidos en las condiciones en las que fueron formulados o no representan el comportamiento de algunos de sus componentes, especialmente en el caso de cargas que presentan dinámicas discretas. En las siguientes secciones de este capítulo se presentan los problemas y soluciones planteados en la literatura en el modelamiento de la carga. Allí se presentan tanto ventajas como desventajas de los modelos actuales (dinámicos y estáticos, fenomenológicos y empíricos).

2.2 Problemas Reportados en la Literatura

Como se mencionaba anteriormente, a pesar de las investigaciones y la dedicación de los investigadores al modelamiento de la carga aún no se cuenta con un modelo que represente el efecto agregado de todos sus componentes, visto desde un nivel de transmisión. Esto de debe principalmente a la gran cantidad y la diversidad de elementos que conforman la carga en este nivel, aspecto que dificulta el modelamiento, como tal, de la carga. Como consecuencia de esto se generan problemas en los resultados de los análisis de los sistemas eléctricos de potencia y a su vez su planeación y la operación.

A continuación se presentan los problemas encontrados en las áreas de modelamiento, análisis de estabilidad y sistemas de monitoreo y operación que están asociados a la representación de la carga.
2.2.1 Modelamiento de la Carga

1. Se ha prestado mucha atención al modelamiento de los dispositivos que intervienen en el generación, transmisión y distribución de la energía eléctrica, pero muy poca al modelamiento de las cargas, hasta tal punto que continúa siendo un área con muchas incertidumbres [2], [13], [21], [23], [35], [37].

2. El modelamiento preciso de la carga sigue siendo una tarea difícil debido a los siguientes factores [1], [2], [8], [9], [13], [18], [21], [29], [34], [37], [41], [50]:
 a. Gran número de dispositivos involucrados y una gran diversidad entre ellos.
 b. Propiedad y ubicación de las cargas en las instalaciones de los usuarios las hacen inasequibles.
 c. Cambio de la composición de la carga durante el día, la semana, el mes, el clima y en general en el tiempo.
 d. Falta información precisa sobre la composición de la carga.
 e. Incertidumbre en la característica de muchos componentes de la carga, particularmente ante variaciones grandes de frecuencia y voltaje.

3. La representación precisa de la carga requiere que se tenga en cuenta el efecto combinado de todos los elementos que la componen en un momento dado [1], [21], [41].

4. El comportamiento de la carga es dinámico por naturaleza [1], [35].

5. Un modelo que capture muy bien el comportamiento dinámico durante una perturbación específica no necesariamente lo hará para otro tipo de perturbaciones. Un modelo de carga debe estar en capacidad de representar el comportamiento de ella ante un conjunto de perturbaciones [8].

6. Se requiere de una gran cantidad de datos de entrada y salida para ajustar los parámetros de las redes neuronales [8].

7. Se han tenido problemas para la modelación de la carga usando redes neuronales debido a dificultades con los parámetros de aprendizaje, lentitud en la convergencia, fallas en el entrenamiento debido a la convergencia a mínimos locales, y dificultades en determinar una estructura (número de capas, número de neuronas por capa, funciones de activación, entre otros) [2].

8. Las redes neuronales artificiales son sensibles al cambio en las condiciones de cargabilidad del sistema [8].
9. Las redes neuronales artificiales deben ser entrenadas con datos obtenidos de variaciones de voltaje y frecuencia por fuera de sus valores normales de operación para poder capturar la dinámica de la carga [23].

10. Para la selección de la estructura de un modelo se requiere de conocimiento a priori del sistema y de la composición de la carga. Este conocimiento generalmente no se encuentra disponible [2], [9], [37].

11. Se requiere de modelos que expliquen en comportamiento no lineal de la carga cuando en el sistema se presentan grandes perturbaciones. Además se necesita caracterizar el comportamiento de la carga ante bajos voltajes y sus esquemas de desconexión por bajo voltaje [9], [18].

12. Mejorar la modelación dinámica de la carga es necesario no sólo por ser un elemento importante del sistema y ser dinámico por naturaleza, sino porque un modelo inapropiado de carga afecta la modelación de otros elementos del sistema menos valorados (como los PSS y otros sistemas de control) [18].

13. El modelado de carga por agregación de componentes es impráctico para representar su comportamiento dinámico excepto en los casos que se conozca la composición de la carga con un alto grado de confiabilidad [1], [2], [18], [41].

14. El modelado de la carga a partir de mediciones en campo está sujeto a las pruebas que se hagan en el nodo que se quiere modelar o a la información que se pueda obtener de los equipos de monitoreo del sistema [1], [2], [18], [43].

15. Los modelos de carga basados en mediciones no deben ser aplicados a nodos diferentes a aquellos en los que se realizaron las medidas debido a que los componentes de la carga son diferentes en cada nodo. Además, para tener en cuenta cambios de composición en la carga se requieren mediciones continuas y no es práctico tener en cuenta una amplia variación en el voltaje y la frecuencia [29], [41].

16. Los modelos de carga tradicionales son de parámetros constantes y esto solo es cierto bajo unas condiciones de operación dadas [29].

17. Los modelos de carga propuestos no conservan la topología del sistema original y algunos no tienen en cuenta la separación existente entre las cargas (el efecto de la red de transmisión) [29].

18. Una considerable atención se ha prestado a la modelación de la carga tanto individual como compuesta en los niveles de distribución, sin embargo hay que seguir haciendo esfuerzos para mejorar los modelos de carga del nivel de transmisión. Esto requiere una mejor representación de la respuesta agregada de la carga de los niveles de
subtransmisión y distribución, así como de sus compensadores y de sus transformadores de alimentación (generalmente LTC), puesto que estos niveles son inobservables desde el nivel de transmisión. Esto es de vital importancia en el análisis de estabilidad de tensión donde las cargas juegan un rol importante, es más, donde la restauración o recuperación de carga es una de las fuerzas que lleva a la inestabilidad de tensión [46].

19. Modelos genéricos de carga han sido propuestos pero su uso para representar el efecto agregado de los niveles de subtransmisión y distribución es cuestionable, es más estos modelos involucran dinámicas continuas en el tiempo y no tienen en cuenta dinámicas discretas como las del LTC. Además su enfoque ha sido en la potencia de entrada al nodo así que este modelo no puede ser fácilmente actualizado si se presentan cambios internos como variaciones en la demanda o en el nivel de compensación en el sistema de distribución [46].

20. El uso de polinomios o funciones trigonométricas para modelar el comportamiento dinámico de la carga puede tener potenciales errores [37].

21. Es imposible contar con un modelo de carga detallado que contenga todos los dispositivos que demandan energía en un momento dado [1].

22. Muchos de los modelos propuestos en la literatura, y sus parámetros, fueron construidos y aplicados en sistemas o estudios particulares [41].

23. El efecto de la potencia reactiva en una subestación queda subestimado si se considera que la potencia reactiva medida es la potencia consumida por la carga [43].

24. Debido a la complejidad de las cargas modernas, los modelos paramétricos son incapaces de capturar con precisión los fenómenos asociados a la potencia, el voltaje y la frecuencia simultáneamente [23].

25. Los modelos $P-Q$ de carga no deben ser empleados para modelar nodos en los que existen cargas compuestas (diferentes tipos de carga alimentados por un mismo nodo del sistema) [23].

26. La característica de la carga afecta el comportamiento dinámico de los sistemas de potencia [10].

27. El modelamiento de la carga requiere la estimación adecuada de su composición, de la combinación de modelos de diferentes dispositivos para tener un modelo de carga manejable, todo esto sujeto a la dificultad en la toma de mediciones en campo [10].
28. Es muy simple hacer modelos de elementos individuales que componen la carga (motores, calentadores, lámparas, entre otros), pero determinar la composición exacta de la carga es una tarea difícil puesto que cambia constantemente (depende del uso que los usuarios hacen del sistema de potencia, el clima y otros factores) [10].

29. Si se tienen modelos simples de los diferentes dispositivos que componen la carga y estos son matemáticamente diferentes (en forma o estructura), el modelo compuesto es exageradamente complejo y requiere de grandes esfuerzos para reducir el modelo a algunas expresiones más manejables [10].

30. Los componentes de la carga operan usualmente a voltajes diferentes esto dificulta hacer modelos por agregación [10].

31. A menos que se tenga una gran variedad en los componentes de la carga y que haya sido analizada la composición con algún grado de detalle, no se podrán interpretar los resultados obtenidos con el .n de extrapolarse a otras condiciones [10].

32. No se puede escapar a la necesidad de relacionar el comportamiento de la carga en los nodos del sistema con el comportamiento de los dispositivos que la componen [10].

2.2.2 Análisis de Estabilidad de Sistemas de Potencia

1. El modelado apropiado de las características de la carga es importante para el análisis de los sistemas de potencia, en particular para el fenómeno de inestabilidad de tensión [2], [35], [43].

2. Muchos estudios han demostrado que la representación de la carga tiene un gran impacto en los resultados obtenidos en el análisis de sistemas de potencia [1], [2], [8], [18], [21], [34], [37], [40], [41], [42], [43].

3. Para el análisis de estabilidad de voltaje no se recomienda el uso de modelos estáticos. Además, estudios de casos reales han enfatizado en la necesidad de contar con modelos dinámicos de carga más precisos [18], [21], [41].

4. La estabilidad de voltaje está estrechamente ligada a la estabilidad de la carga y las magnitudes de los voltajes dependen directamente de las fluctuaciones de la carga y de la respuesta de la carga ante variaciones en el voltaje [1], [40].

5. La detección del fenómeno de inestabilidad de voltaje es principalmente dependiente de las relaciones exactas entre la potencia y el voltaje y la potencia reactiva y el voltaje [1], [40].
6. La dependencia del voltaje y la frecuencia de la carga afecta en gran medida el comportamiento dinámico del sistema de potencia, incluyendo su repuesta ante perturbaciones de pequeña señal, la estabilidad transitoria, la estabilidad de largo plazo, el amortiguamiento de oscilaciones y la estabilidad de voltaje \([8], [29]\).

7. Los modelos estáticos de carga son adecuados para algunos análisis dinámicos de los sistemas de potencia pero no para todos. Por tal motivo se requiere contar con un modelo dinámico de carga que sea preciso \([9]\).

8. Usualmente la carga se representa como una constante, sin embargo esta representación es inadecuada para algunos estudios como estudios dinámicos del sistema o estudios de colapso de voltaje \([35], [42]\).

9. Para hacer análisis de estabilidad en línea en los sistemas de potencia se requiere monitorear y modelar la carga en tiempo real \([2]\).

10. El problema de estabilidad de voltaje es dinámico por naturaleza y en algunos aspectos no puede ser predicido usando modelos estáticos de carga \([1]\).

11. Excepto casos especiales, el problema de estabilidad en los sistemas de potencia se ha tomado como el problema de mantener las unidades de generación trabajando en conjunto, así se han dedicado la mayoría de los esfuerzos en representar las unidades de generación y la carga ha sido tomada como un factor que afecta las impedancias de transmisión \([10]\).

2.2.3 Sistemas de Monitoreo y Operación

1. Modelos inadecuados de carga llevan a que el sistema opere en puntos cercanos al colapso o a la separación (operación en islas por incapacidad de transmitir potencia a todas las áreas del sistema) \([9], [42]\).

2. Se requieren de modelos de carga más precisos para tener cálculos más aproximados de los límites de operación de los sistemas de potencia \([9]\).

3. Equipos disponibles para la recolección de la información a veces son inasequibles o la información que reportan no es útil con propósitos de análisis \([21]\).

4. La creciente demanda de energía eléctrica y la falta de recursos (financieros y materias primas para la generación de energía) son algunas de las razones por las cuales se ha forzado la infraestructura de
los sistemas de potencia a trabajar en regímenes de cargabilidad altos [18], [43].

5. El conocimiento/información de los parámetros de la carga facilitan la planeación de la operación del sistema, la predicción o prospección acertada de diferentes escenarios y proveen acciones de control adecuadas que se deben tener para prevenir un comportamiento indeseado en el sistema de potencia [29], [41], [43].

6. El comportamiento de los sistemas de potencia no solo depende de la carga sino también de las impedancias que las separan, ya que tanto la carga como las impedancias de la red afectan el flujo de potencia en el sistema de potencia [29].

7. Existe una gran dificultad para separar los cambios debidos a variaciones en la frecuencia y variaciones asociadas al cambio de tensión que acompaña las variaciones de frecuencia, esto dificulta la determinación del efecto de los cambios de frecuencia en el comportamiento de la carga [13].

8. Es muy difícil hacer cambios de voltaje superiores a ±10% para identificar el comportamiento de la carga [10].

9. Hacer cambios perceptibles en la frecuencia es prácticamente imposible, excepto en el caso especial de una carga aislada [10].

2.3 Soluciones Reportadas en la Literatura

En la sección anterior se presentaron los problemas que actualmente presentan los modelos de carga. Como se pudo ver estos problemas están clasificados en las áreas de modelamiento, análisis de sistemas de potencia y monitoreo y operación, luego como es de esperarse, las investigaciones en el modelamiento de la carga también se encuentran dirigidas a estas mismas áreas. Esto ha permitido dar soluciones a algunos de los problemas que se presentaron en la sección anterior.

A continuación se presentan las soluciones reportadas en la literatura y que se relacionan con la representación de la carga.
2.3.1 Modelamiento de la Carga

1. Modelar la carga es un tema que está adquiriendo cada vez más importancia debido a que los sistemas de potencia están siendo operados más y más en estado de estrés [8], [10], [18], [43].

2. Exactamente qué se incluye y qué no en la carga depende de qué está y qué no está representado en el modelo del sistema [21].

3. Si un dispositivo o componente debe ser modelado en detalle o no depende de que tanto la respuesta de este componente afecta las excursiones típicas del voltaje y la frecuencia en el estudio que se está realizando [21].

4. Se han caracterización algunas de las cargas que más impacto tienen en el comportamiento del sistema de potencia [21].

5. Toma de datos del sistema durante diferentes horas del día, diferentes horas de la semana, y diferentes estaciones del año, y así poder caracterizar la carga del sistema y modelarla adecuadamente [41].

6. Como no se cuenta con la medición de potencia de cada carga sino con la de todas las cargas conectadas a un nodo del sistema, se consideran las cargas como una carga compuesta por todos aquellos dispositivos que se encuentran conectados al nodo en un momento dado [23].

7. Modelos estáticos para diferentes tipos de carga y valores de sus parámetros [1], [40].

8. Uso de herramientas de inteligencia artificial para modelar el comportamiento dinámico de la carga [1], [2], [8], [18], [23], [34], [37], [50].

9. El comportamiento dinámico de la carga es posible representarlo mediante una red neuronal artificial de tres capas. Es más, está demostrado que una red de tres capas puede modelar cualquier función continua no-lineal [37].

10. Modelos de carga a partir de mediciones obtenidas en campo o mediante la agregación por componentes. La primera se fundamenta en tomar mediciones de potencia activa y reactiva bajo condiciones cambiantes de voltaje y frecuencia, e identificar los parámetros de un modelo de carga previamente seleccionado. El segundo método se basa en el desarrollo analítico de un modelo agregado de carga a partir de los modelos y parámetros de los modelos individuales de los dispositivos principales que conforman la carga [2], [8], [9], [10], [23], [29], [41], [42].
11. La aproximación por componentes permite tener una estructura para el modelo de carga mientras que las mediciones en campo permiten identificar sus parámetros de acuerdo al comportamiento real de la carga [9].

12. Modelos de carga estáticos, dinámicos o híbridos (combinación de estáticos y dinámicos), en los que la parte dinámica está representada por funciones de transferencia de segundo y tercer orden. Ambos tipos de modelos fueron obtenidos a partir de mediciones hechas en campo [1], [9], [18].

13. Se ha encontrado que los modelos estáticos de carga son adecuados para la modelación de cargas residenciales o comerciales, pero para las cargas industriales se requieren modelos dinámicos [1], [18].

14. Las máquinas de aprendizaje proveen un nuevo camino para el modelado de sistemas a partir de datos obtenidos en campo, en particular para el modelado de grandes sistemas complejos industriales como por ejemplo los sistemas de potencia [50].

15. Modelo de dinámico de carga con recuperación exponencial como alternativa para predecir el comportamiento de la carga tanto en estado estable como ante perturbaciones en el voltaje de alimentación [34].

16. El comportamiento de la carga puede ser predicho estudiando los cambios en su requerimiento de potencia activa y reactiva debidos a cambios en el voltaje y la frecuencia del sistema, también analíticamente o experimentalmente usando registradores [1].

17. Aproximaciones estadísticas para seleccionar una muestra limitada en número de cargas dinámicas, y así determinar las estadísticas sobre algunos parámetros y modelar el comportamiento agregado de algunas cargas dinámicas [1].

18. Si se conoce la composición de la carga y los parámetros de los dispositivos que la componen, es posible encontrar parámetros equivalentes mediante la agregación por componentes [41].

19. La mejor forma de determinar los parámetros de la carga es la identificación paramétrica usando experimentos de campo para cada caso [41].

20. Uso de los resultados reportados en la literatura para cálculo previos y análisis comparativo de resultados [41].

21. Con la caracterización de la carga durante toda la estación es posible modelar el comportamiento de carga de toda la estación, no hace falta encontrar parámetros para cada día [41].
La potencia reactiva suministrada por los sistemas de compensación puede ser cuantificada a partir de las mediciones de potencia activa y reactiva en las subestaciones, comparando el consumo de potencia los días de semana con los días de fin de semana y feriados [43].

2.3.2 Análisis de Sistemas Eléctricos de Potencia

1. Las constantes de tiempo de las cargas dinámicas se encuentran alrededor de los 70ms, aunque dependen de la severidad de la perturbación en la red. Para análisis de estabilidad de tensión, las constantes de tiempo están alrededor de los 170ms, teniendo en cuenta que las perturbaciones en este caso son severas [43].

2. La IEEE ha recomendado algunos modelos para representar la carga que pueden ser empleados en simulación dinámica y cálculo de flujos de potencia. Además se propone que se obtiene una mejoría en la fidelidad del modelado usando los modelos existentes incluyendo los modelos dinámicos [8], [50].

3. El modelamiento basado en mediciones de campo permite tener información en línea del comportamiento de la carga, y facilita la integración con sistemas de análisis y control [9].

4. Para la simulación de sistemas de potencia hay una gran variedad de posibles modelos de carga, cada uno de ellos difiere de los demás en su explicidad, complejidad, precisión, dominio en el que están definidos, tratabilidad, y algunos otros aspectos más [8], [34], [50].

5. Los motores de inducción son la carga más peligrosa en la inestabilidad de voltaje de estado estable, usando el criterio \(\frac{dE}{dV} \) para determinar el máximo punto de cargabilidad de un sistema y su proximidad al colapso [40].

6. Existe una técnica para identificar en que nodos el efecto dinámico de la carga es significativo y en cuales no [18].

7. El modelo ZIP es suficiente para hacer análisis de estabilidad de tensión en sistemas eléctricos de potencia [2].

8. Uso de modelos dinámicos de carga para análisis del sistema de potencia ante pequeñas y grandes perturbaciones [41].
2.3.3 Sistemas de Monitoreo y Operación

1. Uso de modelos estáticos de carga para determinar las condiciones de estado estable del sistema [1].

2. Mejoras en los sistemas de adquisición de datos y en los registradores del sistema de potencia [21].

3. Utilizar equipos registradores que permitan capturar datos antes, durante y después de una perturbación en el sistema y así tener la información necesaria para estudiar la respuesta dinámica de la carga ante perturbaciones en el sistema [9], [43].

4. El modelado preciso de la carga permite diseñar los sistemas de potencia de forma más económica debido a que se evitar cálculos erróneos y mala operación del sistema basada en límites de operación imprecisos [29].

5. Modelar el comportamiento dinámico de la carga de forma aproximada permite tener un mejor cálculo de los sistemas de control y los límites de estabilidad en los sistemas eléctricos de potencia [2].

6. El uso de modelos dinámicos en la operación de los sistemas de potencia trae grandes ventajas, como poder capturar la dinámica del sistema de potencia, en particular la dinámica de la carga, cuando el voltaje en el nodo de alimentación cambia, y poder operar el sistema más cerca de sus límites de estabilidad aprovechando así la infraestructura con que se cuenta [35].

7. Determinar la composición de la carga es de gran importancia para saber la condición de cargabilidad en la que está trabajando el sistema de potencia [10].

2.4 Resumen

En este capítulo se presentó el estado del arte en el modelamiento de carga en sistemas eléctricos de potencia. Esta revisión bibliográfica será de gran utilidad en este capítulo para la selección del modelo de carga que se va a emplear para representar el comportamiento dinámico de la carga cuando se formule el modelo del sistema eléctrico de potencia en el siguiente capítulo.

En las figura 3 se presenta un cuadro resumen de los problemas y soluciones reportadas en la literatura asociadas al modelamiento de la carga. En azul se resaltan las áreas en las que se trabajó al realizar este trabajo.
Figura 3. Clasificación de los problemas y soluciones reportadas en la literatura en el modelamiento de carga.
3 Modelamiento de Sistemas Dinámicos

3.1 Introducción

En su gran mayoría, el trabajo de ingeniería está relacionado con modelar matemáticamente el objeto estudiado, esto puede ser apreciado claramente en el anterior capítulo en el que se presentan diferentes alternativas para describir matemáticamente el comportamiento de la carga. Por tanto, es de gran importancia manejar el arte de construir representaciones matemáticas de procesos reales. Para ello se requieren dos conocimientos básicos [28]:

1. Conocimiento experto: se relaciona con el funcionamiento y las propiedades del proceso a modelar.

2. Conocimiento de ingeniería: se relaciona con saber cómo el conocimiento experto puede ser usado para la construcción de modelos útiles del proceso real.

En términos generales, el modelado de sistemas reales puede hacerse de forma estática o dinámica, siendo los modelos dinámicos los más generales (el modelo dinámico de un proceso contiene a todos los modelos estáticos del mismo proceso). Para el modelado dinámico de sistemas existen dos variantes [28]:

1. Modelamiento fenomenológico: se basa en que el comportamiento de un sistema real obedece a ciertas leyes físicas que pueden ser usadas para hacer una representación matemática de los fenómenos asociados al comportamiento del sistema. La limitación que tiene es que sólo es válido cuando se conocen las leyes físicas que rigen el comportamiento del sistema.

2. Identificación de sistemas: se basa en la observación del sistema con el fin de abstraer las propiedades asociadas a su comportamiento y con base en esta abstracción construir una representación matemática.

Aunque en la práctica ambas formas de modelar están poco asociadas, ambas están altamente relacionadas porque las leyes físicas no son más que la identificación de los fenómenos naturales (entendiendo identificación como se definió anteriormente).

Las formas de modelar anteriormente presentadas son las más comunes en el modelamiento de sistemas y procesos en ingeniería, sin embargo no es la única, en ciencias como la astronomía y la física se encuentra una nueva opción para el modelado de sistemas dinámicos. En estas áreas del
conocimiento los sistemas se analizan a partir del comportamiento de su energía.

Esta forma de modelar consiste en relacionar las variables de estado con las variaciones espaciales y/o temporales de la energía del sistema y las excitaciones externas. Esto facilita distinguir las fuerzas conservativas, estabilizantes y desestabilizantes que actúan en el sistema, y a su vez permite describir el comportamiento del sistema como la interacción entre estas fuerzas [38] y las fuerzas externas.

El modelamiento de sistemas dinámicos mediante el comportamiento de su energía, al igual que el “modelamiento en ingeniería” presentado anteriormente, tiene dos paradigmas [31]:

1. Mecánica de Lagrange: basado en los principios variacionales y su generalización en un contexto relativista. Esta formulación de la mecánica está centrada en que existen principios variacionales más allá de las leyes de balance de fuerzas proporcionado por la ley de Newton
 \[F = ma. \]

2. Mecánica de Hamilton: basado directamente en el concepto de energía. Esta formulación de la mecánica se encuentra muy cerca de la mecánica cuántica. Permite modelar sistemas de múltiples partículas que interactúan entre sí con muy buena aproximación, por tal motivo se ha comenzado a emplear para el modelado de sistemas de gran escala, como sistemas eléctricos de potencia.

En la figura 4 se muestra un cuadro resumen con las tendencias en el modelado de sistemas dinámicos presentadas anteriormente y sus paradigmas. En azul se resaltan la tendencia y el paradigma que se empleó para la realización de este trabajo.

Partiendo de las definiciones anteriores, en este capítulo se modeló de forma fenomenológica un sistema eléctrico de potencia multimáquina. A partir de este modelo se hizo la representación de este sistema en términos de la distribución espacial de su energía cuando se considera la demanda constante y cuando se tiene en cuenta el comportamiento dinámico de la carga. En este último caso se tuvo en cuenta el trabajo presentado en el capítulo anterior para la selección de un modelo adecuado para representar el comportamiento dinámico de la carga.
3.2 Sistemas de Hamilton

Como ya se mencionó, el paradigma del modelado de sistemas dinámicos como sistemas de Hamilton parte del concepto de energía. Con esta formulación lo que se busca es relacionar la velocidad del sistema, \dot{q}, y el cambio en los momentos, \dot{p}, con la variación espacial en la energía y con las fuerzas externas que actúan sobre el sistema, τ.

La forma canónica de esta formulación está dada por las ecuaciones 2.1 y 2.2 (la deducción de las ecuaciones de Hamilton y la demostración de su equivalencia con las ecuaciones de Euler-Lagrange se presenta en [31]).

\[
\begin{align*}
\dot{q} &= \frac{\partial H(p,q)}{\partial p} \\
\dot{p} &= -\frac{\partial H(p,q)}{\partial q} + \tau
\end{align*}
\]

Con $H(.)$ función escalar que modela el comportamiento de toda la energía del sistema. Esta función es conocida como Función de Hamilton del Sistema.

A partir de la forma canónica dada por las ecuaciones 2.1 y 2.2, se derivan otras formulaciones de los sistemas de Hamilton. En la figura 5 una
clasificación de los sistemas de Hamilton, en azul se resalta el tipo de sistema de Hamilton que se empleó en la realización de este trabajo.

<table>
<thead>
<tr>
<th>Sistemas de Hamilton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forma Canónica</td>
</tr>
</tbody>
</table>

Conservativos

Disipativos

- Elem. Disip. Lineales
- Elem. Disip. No Lineales

Figura 5. Clasificación de los sistemas de Hamilton

En la siguiente sección se presenta la descripción matemática de los sistemas disipativos de puertos controlados cuyos elementos disipativos presentan un comportamiento lineal. Esta descripción será empleada en secciones posteriores para el modelamiento de sistemas de potencia multimáquina.

3.3 Sistemas Disipativos de Hamilton de Puertos Controlados

En el análisis de sistemas complejos se debe tener en cuenta las pérdidas de energía, ellas juegan un papel muy importante en el comportamiento del sistema ya que pueden hacer que un sistema se vuelva inestable. Un caso en el que esto se ve reflejado es en los sistemas de potencia. En estos sistemas las limitaciones en el transporte de energía reactiva hace que los voltajes tomen valores por fuera de los límites permitidos y que en muchas ocasiones el sistema colapse.

Como se mostró en la sección anterior, los sistemas de Hamilton abarcan sistemas en los que existen elementos que disipan o consumen energía. Estos sistemas están definidos por un espacio de estados \(\chi \) descrito por el conjunto \(\{J(x), R(x), g(x), H(x)\} \), donde las matrices \(J(x) \), \(R(x) \) y \(g(x) \) capturan la estructura de interconexión del sistema (\(J(x) \) modela las estructuras conservativas del sistema, \(R(x) \) modela las estructuras disipativas del sistema, \(g(x) \) modela los puertos del sistema), y \(H(\cdot): \chi \rightarrow \mathbb{R} \) es una función
independiente de la estructura del sistema que representa toda la energía almacenada en él [48]. Las ecuación 2.3 muestra la relación entre los elementos del conjunto \([J(x), R(x), g(x), H(x)]\).

\[
\begin{align*}
\dot{x} &= \left[J(x) - R(x) \right] \frac{\partial H(x)}{\partial x} + g(x)u \\
y &= g^T(x) \frac{\partial H(x)}{\partial x}
\end{align*}
\] (2.3)

En este trabajo, el modelo de las estructuras disipativas, \(R(x)\), está dado por la ecuación 2.4.

\[u_r = -Sy_r \] (2.4)

Dónde \(S\) es una matriz simétrica semidefinida positiva, \(u_r\) y \(y_r\) son las variables asociadas a los puertos en los que se disipa energía.

De la anterior formulación, ecuaciones 2.3 y 2.4, se tiene que existen dos tipos de estructuras geométricas que tienen un importante rol en el comportamiento de este tipo de sistemas:

1. Interconexiones internas: asociadas a la conservación de la energía.

2. Estructuras disipativas: asociadas a los elementos que disipan energía en el sistema.

Además, de esta misma formulación se derivan las siguientes propiedades de los sistemas disipativos de puertos controlados [48]:

1. Los sistemas disipativos de puertos controlados son modulares: la interconexión de sistemas de este tipo da como resultado otro sistema disipativo de puertos controlados con \(H(x) = \sum_{i=1}^{n} H_i(x)\), donde \(n\) es el número de sistemas interconectados.

2. La matriz \([J(x) - R(x)]\) contiene toda la información del sistema autónomo descrito por la ecuación 2.5.

\[
\dot{x} = \left[J(x) - R(x) \right] \frac{\partial H(x)}{\partial x}
\] (2.5)

En las siguientes secciones se utilizará la formulación presentada anteriormente, ecuaciones 2.3 y 2.4, para modelar sistemas de potencia multimáquina, además en el próximo capítulo se analizará la estabilidad del sistema autónomo descrito por la ecuación 2.5.
3.4 Realización Disipativa de Hamilton de Sistemas Eléctricos de Potencia

En las secciones anteriores se presentó un tipo especial de sistemas de Hamilton: los sistemas disipativos de Hamilton de puertos controlados. Estos sistemas pueden ser usados para modelar sistemas dinámicos conservativos o disipativos en términos del comportamiento de su energía, facilitando, en algunos casos, la aplicación de diferentes herramientas su análisis.

Para modelar sistemas dinámicos como un sistema de puertos controlados se debe realizar una transformación, llamada Realización Disipativa de Hamilton, o Realización de Hamilton en el caso de los sistemas conservativos. Tal transformación consiste en encontrar los elementos del conjunto \(\{J(x), R(x), g(x), H(x)\} \), a partir del modelo original o inicial que se tenga del sistema dinámico. Para tal fin, el sistema debe ser expresado de forma afín con la entrada, ecuación 2.6 en el caso de sistemas algebraico-diferenciales como los sistemas eléctricos de potencia.

\[
\begin{align*}
x \cdot &= f(x,z) + g(x,z)u \\
0 &= \sigma(x,z)
\end{align*}
\]

Donde \(x \in \mathbb{R}^n \), \(u \in \mathbb{R}^m \), \(z \in \mathbb{R}^s \) representan, respectivamente, las variables de estado, las entradas del sistema y las variables algebraicas. Además, se asume que las funciones vectoriales \(f(\cdot) \), \(g(\cdot) \) y \(\sigma(\cdot) \) son suaves y de las dimensiones adecuadas.

Luego de tener el sistema expresado de esta forma, ecuación 2.6, se deben encontrar las matrices \(J(x,z) \) y \(R(x,z) \), y la función de energía o función de Hamilton del sistema \(H(x,z) \), tal que se satisfagan las restricciones 2.7 y 2.8.

\[
\begin{align*}
f(x,z) &= \left[J(x,z) - R(x,z) \right] \frac{\partial H(x,z)}{\partial x} \\
\sigma(x,z) &= \frac{\partial H(x,z)}{\partial z}
\end{align*}
\]

Siendo \(H(x,z) \) una función escalar continua y diferenciable, \(J(x,z) \) una matriz antisimétrica y \(R(x,z) \) una matriz semidefinida positiva en un dominio apropiado.

De la ecuación 2.8 puede inferirse una propiedad muy importante de los sistemas de puertos controlados con restricciones algebraicas: “los cambios en la energía del sistema son independientes de los valores que tomen las restricciones algebraicas a lo largo de las trayectorias del sistema”[25]-[27].
Finalmente, al encontrar las matrices $J(x,z)$ y $R(x,z)$, y la función de Hamilton del sistema $H(x,z)$, el sistema toma la forma descrita por la ecuación 2.3 (ver sección anterior).

Luego de hacer una breve presentación del procedimiento para representar un sistema dinámico como un sistema disipativo de puertos controlados, se aplicará este procedimiento para representar sistemas de potencia multimáquina como sistemas disipativos de puertos controlados. Para hacer esta aplicación se tendrán en cuenta dos condiciones: demanda de potencia activa y reactiva constante en los nodos de carga, y carga con comportamiento dinámico dependiente del voltaje de alimentación.

3.4.1 Realización Disipativa de Hamilton Teniendo en Cuenta Demanda de Potencia Activa y Reactiva Constante

Considere un sistema eléctrico de potencia de n máquinas y m cargas interconectadas por líneas de transmisión sin pérdidas. Sea el nodo $n+1$ el nodo de referencia del sistema. Adoptando como modelo de las unidades de generación el modelo en uno solo de sus ejes (modelo de tercer orden de los generadores sincrónicos), y considerando que los nodos de carga tienen una demanda constante de potencia activa y reactiva, el modelo del sistema eléctrico de potencia está dado por las ecuaciones 2.9 y 2.10 [25], [27].

\[
\begin{bmatrix}
\delta_i \\
\omega_i \\
\phi_i \\
E_{q_i}
\end{bmatrix} = \begin{bmatrix}
\omega_i (\omega_i - 1) \\
-\frac{D_i (\omega_i - 1)}{M_i} - \frac{1}{M_i} P_e \\
\phi_i \\
0
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
0 \\
\frac{1}{\tau_{d0}}
\end{bmatrix} \begin{bmatrix}
P_m \\
E_{f_i}
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
0 \\
\frac{1}{\tau_{d0}}
\end{bmatrix} \begin{bmatrix}
P_m \\
E_{f_i}
\end{bmatrix}
\]

(2.9)

\[
\bar{\delta_i} = \frac{E_{d_i} V_i \text{sen}(\theta_i - \delta_i)}{X_{d_i}} + \sum_{j=1}^{n+1} B_{ij} V_j \text{sen}(\theta_j - \theta_i) + \sum_{k=n+2}^{n+m+1} B_{ik} V_k \text{sen}(\theta_i - \gamma_k) + \sum_{j=1}^{n+1} B_{ij} V_j \cos(\theta_j - \theta_i) - \sum_{k=n+2}^{n+m+1} B_{ik} V_k \cos(\theta_i - \gamma_k) - \sum_{i=1}^{n+1} B_{di} V_i \text{sen}(\gamma_i - \theta_i) + \sum_{i=1}^{n+1} B_{dk} V_k \text{sen}(\gamma_k - \gamma_i) - \sum_{i=1}^{n+1} B_{di} V_i \cos(\gamma_i - \theta_i) + \sum_{i=1}^{n+1} B_{dk} V_k \text{sen}(\gamma_k - \gamma_i) \]

(2.10)
Donde

\[P_{di} = \frac{E_i V_{is} \cos(\theta_i - \delta_i)}{X_{di}} \]

\[Q_{qi} = \frac{E_i V_{is} \cos(\theta_i - \delta_i)}{X_{di}} \]

\[\phi_i = \frac{x_{di} E_{qi}}{x_{di} T_{di0}} + \frac{x_{di0} - x_{di}}{x_{di} T_{di0}} \]

Sean \[x = [x_1, x_2, \ldots, x_n]^T \], \[x_i = [\delta_i, \omega_i, E_{qi}]^T \], \[z = [z_{g_1}, z_{g_2}, \ldots, z_{g_n}, z_{a_1}, z_{a_2}, z_{a_3}, \ldots, z_{a_{mn}}]^T \], \[z_{g_i} = [\theta_i, V_i]^T \], \[z_{a_i} = [y_{a_i}, V_{a_i}]^T \], \[f = [f_1, f_2, \ldots, f_n]^T \],

\[f_i = \left[\omega_i (\omega_i - 1), \left(-\frac{D}{M_i} \right) (\omega_i - 1) - \left(\frac{1}{M_i} \right) P_{ei}, \phi_i \right]^T \], \[g = \text{diag} [g_1, \ldots, g_n] \], \[g_i = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{bmatrix} \frac{1}{x_{di0}} \]

y \[u = [P_{in}, E_{f}]^T \], el modelo del sistema eléctrico de potencia (ecuaciones 2.9 y 2.10), puede escribirse como un sistema de la forma 2.6. Esto implica, según el procedimiento previamente presentado, que la realización disipativa de Hamilton es posible hacerla para este tipo de sistemas.

Según el procedimiento descrito anteriormente, el segundo paso para encontrar la representación de Hamilton de un sistema dinámico es encontrar las matrices \[J(x, z) \] y \[R(x, z) \], y la función de Hamilton del sistema \[H(x, z) \], tales que el sistema pueda ser escrito mediante las ecuación 2.11.

\[\begin{cases} \dot{x} = [J(x, z) - R(x, z)] \frac{\partial H(x, z)}{\partial x} + g(x, z)u \\ 0 = \frac{\partial H(x, z)}{\partial z} \end{cases} \]

(2.11)

Para lograr esto se hizo la transformación que se muestra en las ecuaciones 2.12 y 2.13 [25], [27].

\[v_i = \ln V_i \]

(2.12)

\[v_k = \ln V_k \]

(2.13)

Esta transformación es posible hacerla porque el valor de los voltajes en los nodos de generación y de carga es mayor que cero hasta que el sistema
colapsa. Con esta transformación es posible demostrar que una función de Hamilton que satisface las restricciones 2.7 y 2.8 es

\[H(x, z) = E_k(x, z) + E_p(x, z) \]

Donde \(E_k(x, z) \) y \(E_p(x, z) \) están definidas como en 2.14 y 2.15.

\[
E_k = \frac{1}{2} \sum_{i=1}^{n} \omega_i M_i (\omega_i - 1)^2
\]

\[
E_p = \frac{1}{2} \sum_{i=1}^{n} e^{2\gamma_i} \left(\frac{1}{X_{d_i}} - B_{ii} \right) - \frac{1}{2} \sum_{k=n+2}^{n+m+1} B_{kk} e^{2\gamma_k}
\]

\[
- \sum_{k=n+2}^{n+m+1} P_{d_i} \gamma_k + Q_{d_i} \nu_k - \sum_{i=1}^{n} E_i e^{\nu_i} \cos (\theta_i - \delta_i)
\]

\[
- \sum_{i=1}^{n} \frac{X_{d_i}}{2X_{d_i}} \left(X_{d_i} - X_{d_i}' \right) E_{d_i}^2 - \sum_{i=1}^{n} \sum_{k=n+2}^{n+m+1} B_{ik} e^{\nu_i + \nu_k} \cos (\theta_i - \gamma_k)
\]

\[
- \sum_{k=n+2}^{n+m+1} \sum_{k=n+2}^{n+m+1} B_{ik} e^{\nu_i + \nu_k} \cos (\gamma_k - \gamma_i)
\]

Luego la representación de Hamilton de los sistemas eléctricos de potencia multimáquina queda descrito por las ecuación 2.16.

\[
\begin{bmatrix}
\delta_t \\
\omega_t \\
E_{q_t} \\
0
\end{bmatrix}
= - \begin{bmatrix}
0 & \frac{1}{M_i} & 0 & 0 \\
-\frac{1}{M_i} & -\frac{D_i}{M_i^2 \omega_0} & 0 & 0 \\
0 & 0 & -\frac{X_{d_i} - X_{d_i}'}{\tau_{d_i}} & 0 \\
0 & 0 & 0 & -\frac{X_{d_i} - X_{d_i}'}{\tau_{d_i}}
\end{bmatrix}
\begin{bmatrix}
P_{q_i} \\
\omega_i M_i (\omega_i - 1) \\
-x_{d_i} - x_{d_i}' \\
-x_{d_i} - x_{d_i}'
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 \\
0 & 0 \\
-\frac{\tau_{d_i}}{x_{d_i} - x_{d_i}'} & \phi_i \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
P_{m} \\
E_f
\end{bmatrix}
\]

\[0 = \frac{\partial H(x, z)}{\partial z} \]

Siendo las matrices \(J(x, z) \) y \(R(x, z) \)

\[
J(X, Z) = \begin{bmatrix}
0 & \frac{1}{M_i} & 0 \\
-\frac{1}{M_i} & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
\begin{equation}
 R(X, Z) =
 \begin{bmatrix}
 0 & 0 & 0 \\
 0 & \frac{D_i}{M_i^2 \omega_0} & 0 \\
 0 & 0 & \frac{X_d - X_d'}{\tau_d 0_i}
 \end{bmatrix}
\end{equation}

Nótese que $J(x, z)$ es una matriz antisimétrica y que $R(x, z)$ es una matriz simétrica semidefinida positiva en la región dónde $D_i \geq 0$, luego la realización disipativa de Hamilton para los sistemas de potencia considerando la demanda de potencia activa y reactiva en los nodos de carga está completa.

3.4.2 Realización Disipativa de Hamilton Teniendo en Cuenta el Comportamiento Dinámico de la Carga

Luego de representar los sistemas de potencia con demanda de potencia constante como sistemas de Hamilton, lo que se quiere es extender este resultado al caso en que la carga presenta un comportamiento dinámico, en particular cuando la respuesta dinámica de la carga depende del comportamiento del voltaje de alimentación. Esto en el capítulo siguiente permitirá determinar cuál es el efecto que la respuesta dinámica de la carga tiene sobre la estabilidad de tensión en los sistemas de potencia.

Partiendo del estado del arte presentado con anterioridad, se sabe que un modelo de carga que represente de forma adecuada su comportamiento dinámico debe contar con tres características primordiales [39]:

1. Debe mostrar la dependencia del comportamiento en estado estable de la carga, del comportamiento del voltaje de alimentación.

2. Debe mostrar la dependencia del comportamiento transitorio de la carga, del comportamiento transitorio del voltaje de alimentación.

3. Debe mostrar la dependencia del comportamiento total de la carga, ante perturbaciones, de su constante de tiempo.

Estas condiciones fueron inferidas luego varias investigaciones orientadas a estudiar la respuesta de la carga ante perturbaciones, particularmente perturbaciones de gran señal [17]. Tales investigaciones mostraron que la respuesta dinámica de la carga es como se muestra en la figura 6.
Al hacer el estado del arte en el modelamiento de la carga, se encontró que un modelo que reúne las tres condiciones necesarias para representar el comportamiento dinámico de la carga presentadas en [39] y ya mostradas en este trabajo, que representa el comportamiento mostrado en la figura 6 y que a su vez fue desarrollado para hacer análisis de sistemas de potencia es el propuesto por Hill en 1993 [17]. Este modelo está descrito por las ecuación 2.17.

\[
\begin{align*}
\tau_p \frac{dP_d}{dt} + P_d &= P_s(V) + K_p(V)\frac{dV}{dt} \\
\tau_q \frac{dQ_d}{dt} + Q_d &= Q_s(V) + K_q(V)\frac{dV}{dt}
\end{align*}
\]

Figura 6. Respuesta dinámica de la carga ante una perturbación tipo escalón en el voltaje de alimentación.

En este modelo las funciones \(P_s(V) \) y \(Q_s(V) \) modelan el comportamiento de estado estable de la carga y su dependencia del voltaje, \(K_p(V) \) y \(K_q(V) \) modelan el comportamiento transitorio de la carga y su dependencia del voltaje.
y, \(\tau_p \) y \(\tau_q \), son las constantes de tiempo de la carga. La interacción entre estas funciones permite representar el comportamiento mostrado en la figura 6.

Por otra parte, en la referencia [45] se demuestra que el comportamiento dinámico de las principales cargas dinámicas en los sistemas eléctricos de potencia (motores de inducción, transformadores con cambiadores de tomas y hornos de calefacción y sistemas de refrigeración), puede ser representado mediante las ecuaciones 18 y 19. Este es otro motivo por el que se seleccionó este modelo de carga para realizar este trabajo.

Partiendo de las ecuación 2.17, además teniendo en cuenta que el comportamiento del voltaje en los diferentes nodos del sistema está estrechamente relacionado con la capacidad del sistema de transportar energía reactiva, el voltaje en los nodos de carga puede representarse como un estado más del sistema mediante la ecuación 2.18.

\[
V = \frac{1}{K_q(V)} \left(\tau_q \frac{dQ_q}{dt} + Q_d - Q_s(V) \right)
\]

(2.18)

Remplazando esta expresión en la ecuación para el cálculo de la potencia activa, la ecuación 2.17 queda expresada como la ecuación 2.19. La expresión resultante nos permite relacionar el comportamiento de la potencia activa con la demanda de potencia reactiva.

\[
\tau_p \frac{dP_d}{dt} + P_d = P_s(V) + \frac{K_p(V)}{K_q(V)} \left(\tau_q \frac{dQ_q}{dt} + Q_d - Q_s(V) \right)
\]

(2.19)

Si en las expresiones 2.18 y 2.19 tomamos como término de perturbación el asociado a la tasa de cambio de la potencia reactiva demandada en los nodos de carga, \(\tau_q \frac{dQ_q}{dt} \), el comportamiento nominal del voltaje en los nodos de carga así como el de la demanda de potencia activa en estos nodos puede escribirse como 2.20 y 2.21.

\[
\dot{V} = \frac{1}{K_q(V)} (Q_d - Q_s(V))
\]

(2.20)

\[
\tau_p \frac{dP_d}{dt} + P_d = P_s(V) + \frac{K_p(V)}{K_q(V)} (Q_d - Q_s(V))
\]

(2.21)

Las ecuaciones 2.20 y 2.21 permiten el cálculo tanto de la potencia activa como del voltaje en los nodos de carga como función de la potencia reactiva demandada. Esto será de gran importancia en el capítulo siguiente para encontrar una región de estabilidad para sistemas eléctricos de potencia multimáquina. Sin embargo para hacer uso de ellas e introducirlas en el modelo del sistema de potencia que se trabajó en el apartado anterior, ecuaciones 2.9
y 2.10, es necesario aplicarle a estas expresiones la transformación dada por las ecuaciones 2.12 y 2.13. Al hacer esto, el comportamiento del voltaje y la potencia activa demandada en los nodos de carga queda representado por 2.22 y 2.23.

\[
\dot{v} = \frac{e^{-v}}{K_q(e^v)} \left(Q_d - Q_s(e^v) \right) \quad (2.22)
\]

\[
\tau_p \frac{dP_d}{dt} + P_d = P_s(e^v) + \frac{K_p(e^v)}{K_q(e^v)} \left(Q_d - Q_s(e^v) \right) \quad (2.23)
\]

Introduciendo las expresiones 2.22 y 2.23 en el modelo del sistema de potencia, ecuaciones 2.9 y 2.10, se obtiene el modelo extendido con las ecuaciones 2.24 y 2.25, sujeto al comportamiento dinámico de la potencia activa demandada en los nodos de carga, ecuación 2.21.

\[
\begin{bmatrix}
\ddot{\delta}_i \\
\dot{\omega}_i \\
\dot{E}_{q_i} \\
\vdots_k \\
\end{bmatrix} = \begin{bmatrix}
\omega_0 (\omega_i - 1) \\
- \frac{D}{M_i} (\omega_i - 1) - \left(\frac{1}{M_i} \right) P_v \\
\varphi_i \\
- \frac{e^{-v}}{k_{q_i}(e^{-v})} (Q_{d_i} - Q_{s_i}(e^{-v})) \\
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
1 & 0 \\
0 & \frac{1}{\tau_d\delta_i} \\
0 & 0 \\
\end{bmatrix} \begin{bmatrix}
P_m \\
\dot{E}_{f_i} \\
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
0 \\
\end{bmatrix} \begin{bmatrix}
dQ_{d_i} \\
\dot{\tau}_{q_i} \\
\end{bmatrix} \\
(2.24)
\]

\[
\begin{bmatrix}
E_{q_i} e^{\phi_i} \sin(\theta_i - \delta_i) \\
- \frac{E_{q_i} e^{\phi_i} \cos(\theta_i - \delta_i)}{X_{d_i}} \\
\frac{\sum_{j=1}^{n+1} B_{ij} e^{v_j+v_i} \sin(\theta_j - \theta_i)}{X_{d_i}} \\
- \frac{\sum_{j=1}^{n+1} B_{ij} e^{v_j+v_i} \cos(\theta_j - \theta_i)}{X_{d_i}} \\
\end{bmatrix} + \begin{bmatrix}
\sum_{j=1}^{n+1} B_{ij} e^{v_j+v_i} \sin(\theta_j - \theta_i) \\
\sum_{j=1}^{n+1} B_{ij} e^{v_j+v_i} \cos(\theta_j - \theta_i) \\
\end{bmatrix} \neq 0
\]

\[
\dot{\theta} = \begin{bmatrix}
\frac{E_{q_i} e^{\phi_i}}{X_{d_i}} - e^{2v_i} - \sum_{j=1}^{n+1} B_{ij} e^{v_j+v_i} \cos(\theta_j - \theta_i) \\
\sum_{j=1}^{n+1} B_{ij} e^{v_j+v_i} \sin(\gamma_k - \gamma_i) \\
\sum_{j=1}^{n+1} B_{ij} e^{v_j+v_i} \sin(\gamma_k - \gamma_i) \\
\end{bmatrix} \neq 0
\]

Sean

\[
f = \begin{bmatrix}
f_{g_1}, f_{g_2}, \ldots, f_{g_n}, f_{la_1}, f_{la_2}, \ldots, f_{la_{n+2}}
\end{bmatrix}^T
\]

siendo

\[
f_{g_i} = \begin{bmatrix}
\omega_0 (\omega_j - 1) - \left(\frac{D}{M_j} \right) (\omega_j - 1) - \left(\frac{1}{M_j} \right) P_v, \delta_i \\
\end{bmatrix}^T, \quad f_{g_i} = \begin{bmatrix}
\frac{e^{-v}}{k_{q_i}(e^{-v})} (Q_{d_i} - Q_{s_i}(e^{-v})) \\
\end{bmatrix}
\]

42
g = diag\([g_1, \ldots, g_n] \), donde \(g_i = \begin{bmatrix} 0 & 0 \\ M_i & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \); y \(b = \begin{bmatrix} 0_1, \ldots, 0_{n+1}, b_{n+2}, \ldots, b_{n+m+1} \end{bmatrix}^T \) con \(0_i = [0 \ 0 \ 0]^T \), \(b_k = \tau_{q_k} \frac{dQ_{d_k}}{dt} \), el modelo conformado por las expresiones 2.24 y 2.25 tiene la forma de un sistema perturbado afín con la entrada descrita por las ecuación 2.26.

\[
\begin{array}{c}
\dot{x} = f(x, z) + g(x, z)u + b(x, z) \\
0 = \sigma(x, z)
\end{array}
\]

(2.26)

Al igual que en el caso en que se consideró la demanda de potencia activa y reactiva constante, en este caso el sistema de potencia se expresó como un sistema afín con la entrada, primer paso para lograr una realización de Hamilton para un sistema dinámico según el procedimiento que se mostró al inicio de esta sección. Esto nos indica que la realización es posible y que el paso a seguir según este procedimiento es encontrar las matrices \(J(x, z) \) y \(R(x, z) \), y la función de Hamilton del sistema \(H(x, z) \), tales que el sistema pueda ser escrito mediante las ecuación 2.11.

Tomando nuevamente como función de Hamilton

\[
H(x, z) = E_k(x, z) + E_p(x, z)
\]

Donde \(E_k(x, z) \) y \(E_p(x, z) \) están definidas como en 2.27 y 2.28.

\[
E_k = \frac{1}{2} \sum_{i=1}^{n} \omega_0 M_i (\omega_i - 1)^2
\]

(2.27)

\[
E_p = \frac{1}{2} \sum_{i=1}^{n} e^{x_i} \left(\frac{1}{X_{d_i}} - B_d \right) - \sum_{k=n+2}^{n+m+1} P_k \gamma_k - \sum_{i=1}^{n} E_i e^{x_i} \cos(\theta_i - \delta_i) - \sum_{i=1}^{n} \frac{X_{d_i}}{X_{d}} E_i^2 - \sum_{k=n+2}^{n+m+1} B_{kh} e^{x_i} - \sum_{i=1}^{n} \sum_{k=n+2}^{n+m+1} B_{ki} e^{x_i} \cos(\theta_i - \gamma_k) \]

- \sum_{k=n+2}^{n+m+1} \sum_{k=n+2}^{n+m+1} B_{ki} e^{x_i} \cos(\gamma_k - \gamma_i)

(2.28)

La representación del Hamilton del sistema eléctrico de potencia multimáquina teniendo en cuenta el comportamiento dinámico de la carga está dada por las ecuación 2.29.
\[
\begin{bmatrix}
\delta_i \\
\omega_i \\
E'_{qk} \\
v_k
\end{bmatrix}
= \begin{bmatrix}
0 & \frac{1}{M_i} & 0 & 0 \\
-\frac{1}{M_i} \frac{D_i}{M_i^2 \omega_0} & 0 & 0 & 0 \\
0 & 0 & \frac{X_{d_i} - X'_{d_i}}{\tau_{d_0}} & 0 \\
0 & 0 & 0 & -f\left(Q_{d_i}, v_k\right)
\end{bmatrix}
\begin{bmatrix}
P_{n} \\
M_i \omega_0 \left(\omega_i - 1\right) \\
-\frac{\tau_{d_0}}{X_{d_i} - X'_{d_i}} \phi_i \\
Q_{d_i}
\end{bmatrix}
\]

\[
0 = \frac{\partial H(X,Z)}{\partial Z} \quad (2.29)
\]

Donde
\[
f(Q_d, v) = \text{diag} \left[f_{n+2} \left(Q_{d_i}, v_{n+2}\right), \ldots, f_{n+m+2} \left(Q_{d_i}, v_{n+m+2}\right) \right], \quad \text{con}
\]

\[
f_k \left(Q_{d_i}, v_k\right) = \frac{e^{-\nu_k}}{Q_{d_i} k_{d_i} \left(e^{-\nu_k}\right)} \left(Q_{v_i} \left(e^{-\nu_k}\right) - Q_{d_i}\right).
\]

En este caso las matrices \(J(x,z)\) y \(R(x,z)\) están definidas como

\[
J(X,Z) = \begin{bmatrix}
0 & \frac{1}{M_i} & 0 & 0 \\
-\frac{1}{M_i} \frac{D_i}{M_i^2 \omega_0} & 0 & 0 & 0 \\
0 & 0 & \frac{X_{d_i} - X'_{d_i}}{\tau_{d_0}} & 0 \\
0 & 0 & 0 & f\left(Q_{d_i}, v_k\right)
\end{bmatrix}
\]

\[
R(X,Z) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & \frac{D_i}{M_i^2 \omega_0} & 0 & 0 \\
0 & 0 & \frac{X_{d_i} - X'_{d_i}}{\tau_{d_0}} & 0 \\
0 & 0 & 0 & f\left(Q_{d_i}, v_k\right)
\end{bmatrix}
\]

Nótese que, al igual que en el caso en que se consideró la demanda de potencia activa y reactiva como constante, la matriz \(J(x,z)\) es antisimétrica y la
matriz \(R(x,z) \) es simétrica y semidefinida positiva en la región definida por
\[D_i \geq 0, f(Q_d, \psi) \geq 0. \] Como existen dos matrices \(J(x,z) \) y \(R(x,z) \), y una función escalar \(H(x,z) \), tales que el sistema pueda ser escrito mediante las ecuaciones 12 y 13, la realización disipativa de Hamilton para un sistema eléctrico de potencia multimáquina teniendo en cuenta el comportamiento dinámico de la carga queda completa, sujeta a las restricciones previamente mencionadas.

Dicha realización, ecuación 2.29, será empleada en el próximo capítulo para el análisis de estabilidad de sistemas eléctricos de potencia multimáquina que alimentan cargas dinámicas.

3.5 Resumen

En este capítulo se hizo una breve introducción a los sistemas de Hamilton, se presentó una clasificación de ellos y se mostró la formulación matemática de la clase más general de los sistemas de Hamilton: los sistemas disipativos de puertos controlados. De estos sistemas se trabajó con aquellos cuya parte disipativa tiene un comportamiento lineal. Esta formulación fue aplicada al modelamiento de sistemas eléctricos de potencia multimáquina, teniéndose como resultado una nueva realización disipativa de Hamilton para este tipo de sistemas. Lo novedoso de esta realización radica en que se tuvo en cuenta el comportamiento dinámico de la carga.

Como resultado colateral se encontró que el comportamiento dinámico de la carga introduce nuevas restricciones en el comportamiento de los sistemas eléctricos de potencia, en el sentido de la formulación de los sistemas disipativos de Hamilton de puertos controlados, en comparación con las realizaciones reportadas en la literatura en las que se considera la demanda de potencia activa y reactiva como constantes \([25],[27]\).

Los resultados obtenidos en este capítulo serán utilizados en el capítulo siguiente como base para el análisis de estabilidad de sistemas de potencia multimáquina.
4 Estabilidad de Sistemas de Potencia

4.1 Introducción

Hasta este punto, en este trabajo se han presentado los problemas y soluciones reportados en la literatura en el modelamiento de la carga, se ha introducido el concepto de modelamiento haciendo énfasis en el modelamiento mediante funciones de energía, especialmente en términos de la función de Hamilton. Partiendo de esto se modeló un sistema eléctrico de potencia multimáquina como un sistema de Hamilton teniendo en cuenta demanda de potencia activa y reactiva constante, y el comportamiento dinámico de la carga, llegándose a concluir que el último caso es más restrictivo que el primero.

Todos estos resultados son la base para el desarrollo de este capítulo, ya que en él se presenta el análisis de estabilidad de sistemas de potencia a partir de la realización de Hamilton teniendo en cuenta el comportamiento dinámico de la carga. Para tal fin se comenzará con la definición de estabilidad que será empleada a lo largo del capítulo con el fin de evitar ambigüedad en la interpretación de los resultados y confusiones al lector.

En términos generales, se entiende que un sistema es estable si al ser perturbado, su trayectoria perturbada permanece cerca de su trayectoria no perturbada [35].

La anterior definición ha dado pie para que al analizar la estabilidad de un sistema dinámico el investigador tenga que hacerse tres preguntas fundamentales [6]:

1. ¿Bajo qué condiciones el sistema puede volverse inestable?
2. ¿Qué posibles trayectorias pueden seguir las variables de estado del sistema?
3. ¿Es posible estimar la velocidad de cambio de las variables de estado del sistema como función de las perturbaciones?

Las respuestas de estas preguntas pueden llegar a ser útiles para encontrar las herramientas adecuadas para el análisis de estabilidad del sistema dinámico de interés. Por ejemplo, en el caso de los sistemas de potencia, y teniendo en cuenta los resultados del capítulo anterior, es posible pensar que cuando las trayectorias del sistema se encuentren por fuera del dominio de la realización disipativa de Hamilton es sistema se vuelve inestable, luego se necesitan herramientas que permitan demostrar o refutar esta hipótesis.

Además de encontrar las herramientas adecuadas para el análisis del sistema dinámico de interés, estas preguntas también han ayudado a los investigadores
ha formular metodologías para el análisis de estabilidad de sistemas dinámicos. Algunas de estas herramientas son:

1. Análisis de bifurcaciones: este análisis permite encontrar puntos en los que las trayectorias del sistema dinámico presentan cambios cualitativos. Este análisis es ampliamente usado para el análisis de sistemas complejos debido a que por su complejidad la mayoría de herramientas de análisis no son aplicables e incluso en algunos casos fallan.

2. Análisis mediante funciones de energía: este análisis busca determinar la estabilidad de los puntos de equilibrio del sistema dinámico mediante el comportamiento de la función de energía del sistema. La herramienta de análisis más conocida es la teoría de Lyapunov [36], sin embargo en el análisis de sistemas complejos se usan el teorema de Dirichlet-Lagrange [31], las funciones de energía de Casimir [31], el método de los momentos [31] y el análisis de pasividad [38]. Estos últimos están orientados principalmente al análisis de sistemas de Hamilton.

3. Teorema de la variedad central: el teorema de la variedad central es una extensión del análisis de bifurcaciones. Este teorema brinda una herramienta para el análisis de estabilidad de sistemas dinámicos en la frontera de su dominio, es decir cuando sus valores propios tienen parte real cero [14]. Sin embargo este teorema no es muy aplicado a sistemas complejos debido a que implica resolver un problema de similar complejidad que encontrar sus trayectorias (resolver las ecuaciones diferenciales que modelan su comportamiento).

4. Análisis de estabilidad total: el análisis de estabilidad total pretende establecer las condiciones que se deben cumplir para que la estabilidad de los puntos de equilibrio de un sistema perturbado y su sistema nominal conservan las mismas características [15].

De las herramientas anteriormente presentadas, se seleccionaron el análisis de bifurcaciones y el análisis de estabilidad total como herramientas para concluir sobre la estabilidad de sistemas de potencia modelados como sistemas de Hamilton (ecuación 2.29). Estas herramientas fueron seleccionadas porque permiten hacer el análisis de sistemas complejos y determinar regiones de estabilidad para estos sistemas. En las siguientes secciones se muestra el análisis de bifurcaciones aplicado a sistemas eléctricos de potencia multimáquina y una aproximación matemática al concepto de estabilidad total aplicado a este tipo de sistemas.

4.2 Análisis de Bifurcaciones en Sistemas Eléctricos de Potencia.

Como se mencionó en la introducción de este capítulo, el análisis de bifurcaciones es una herramienta que permite inferir algunas características
cualitativas del comportamiento del sistema en la vecindad de sus puntos de equilibrio. Se dice que un punto de equilibrio es un punto de bifurcación cuando en este punto hay un cambio cualitativo en el comportamiento del sistema, por ejemplo pasar de un comportamiento estable a uno inestable, al variar el valor de uno o más parámetros del sistema. Esto ha hecho del análisis de bifurcaciones una de las herramientas más utilizadas para el análisis de sistemas complejos, como sistemas de Hamilton.

Como ya se mostró en el capítulo anterior los sistemas de potencia pueden ser representados mediante la formulación de los sistemas de Hamilton, luego el análisis de bifurcaciones es una gran herramienta analizar su comportamiento. Para tal fin (análisis de bifurcaciones), se tomará como modelo del sistema de potencia el descrito por las ecuación 2.29 (correspondiente a la realización disipativa de Hamilton teniendo en cuenta el comportamiento dinámico de la carga), ya que también interesa determinar cómo afecta el comportamiento dinámico de la carga la estabilidad del sistema de potencia. El sistema autónomo que describe el modelo seleccionado para el sistema eléctrico de potencia está dado por la ecuación 3.1.

\[\begin{align*}
\dot{x} &= [J(x,z) - R(x,z)] \frac{\partial H(x,z)}{\partial x} \\
(3.1)
\end{align*} \]

Donde la matriz \([J(x,z) - R(x,z)]\) contiene toda la información del sistema dinámico, en este caso del sistema eléctrico de potencia. Calculando los valores propios de esta matriz es posible determinar en qué puntos el sistema presenta cambios cualitativos en su comportamiento y establecer las condiciones que se deben cumplir para que el sistema sea estable. Al hacer esto se encuentra que los valores propios de la matriz \([J(x,z) - R(x,z)]\) están dados por las expresiones 3.2 a 3.5

\[\begin{align*}
\lambda_{ii} &= -\frac{x_{di} - \dot{x}_{di}}{\tau_{d,i}} \\
\lambda_{2k} &= -f(Q_{d,k}, v_{k}) \\
\lambda_{3i} &= -\left(\frac{1}{2} \right) \left[\frac{D_i - \sqrt{D_i^2 - 4\omega_i^3M_i^2}}{\omega_i M_i^2} \right] \\
\lambda_{4i} &= -\left(\frac{1}{2} \right) \left[\frac{D_i + \sqrt{D_i^2 - 4\omega_i^3M_i^2}}{\omega_i M_i^2} \right] \\
\end{align*} \]

\[\begin{align*}
(3.2) & \quad (3.3) & \quad (3.4) & \quad (3.5)
\end{align*} \]

Vale la pena aclarar que en el caso en que se considera la demanda de potencia activa y reactiva en los nodos de carga como constantes, el valor propio asociado al comportamiento dinámico de la carga, ecuación 3.3, no existe. Esto es importante aclararlo porque allí se ve reflejado uno de los principales efectos de la respuesta dinámica de la carga, y es imponer
condiciones adicionales sobre el espacio de estados viable para que las trayectorias del sistema evolucionen sin que este se vuelva inestable.

Analizando las expresiones 3.2 a 3.5 se encuentra que existen dos posibilidades para que el sistema se vuelva inestable: la primera es que la función que describe el comportamiento del voltaje en los nodos de carga sea negativa, y la segunda es que el amortiguamiento del sistema sea positivo en alguna de las unidades de generación. Con esto en mente se analizó que pasa antes y después del punto en el que el sistema pasa de ser estable a inestable con el fin de determinar si existe un punto de bifurcación. Los resultados obtenidos se presentan a continuación:

1. Si \(f(Q_{d_i}, v_i) > 0 \) y \(D_i > 0 \) entonces el sistema es estable y sus trayectorias se encuentran dentro del dominio de la realización disipativa de Hamilton propuesta en este trabajo, ecuación 2.29.

2. Si \(f(Q_{d_i}, v_i) = 0 \) y \(D_i > 0 \) el sistema se encuentra en una de las fronteras del dominio de la realización disipativa de Hamilton propuesta en este trabajo, ecuación 2.29. En este punto no se puede concluir acerca de la estabilidad del sistema debido a que uno de sus valores propios es cero.

3. Si \(f(Q_{d_i}, v_i) < 0 \) y \(D_i > 0 \) las trayectorias del sistema están por fuera del dominio de la realización de Hamilton propuesta en este trabajo, ecuación 2.29.

4. Si \(f(Q_{d_i}, v_i) > 0 \) y \(D_i = 0 \) el sistema se encuentra en otra de las fronteras del dominio de la realización disipativa de Hamilton, ecuación 2.29. En este punto tampoco se puede concluir sobre la estabilidad del sistema porque existen valores propios puramente imaginarios.

5. Si \(f(Q_{d_i}, v_i) > 0 \) y \(D_i < 0 \) nuevamente las trayectorias del sistema se encuentran por fuera del dominio de la realización de Hamilton propuesta en este trabajo, ecuación 2.29.

De los anteriores resultados se puede concluir que cuando \(f(Q_{d_i}, v_i) = 0 \) se presenta un punto de bifurcación en la trayectoria de los voltajes en los nodos de carga, específicamente en aquel en el que se da esta condición, debido a que en este punto se pasa de tener soluciones estables para las trayectorias del sistema a no tener soluciones, que es una característica de las bifurcaciones tipo silla-nodo. Por otra parte cuando \(D_i = 0 \) ocurre algo similar solo que en este caso las trayectorias del sistema tienden a caer en la cuenca de atracción de órbitas periódicas o ciclos límite, debido a la presencia de valores propios puramente imaginarios, antes de que las soluciones del sistema salgan del dominio de la realización disipativa de Hamilton propuesta en este trabajo en el capítulo anterior, ecuación 2.29.
Además, de los resultados y las conclusiones mostradas en esta sección se puede concluir que la región de estabilidad para sistemas eléctricos de potencia que alimentan cargas que presentan una respuesta dinámica como la mostrada en la figura 6 (ver capítulo anterior), está dada por la intersección de todas las condiciones que satisfacen que \(f(Q_d, v_k) > 0 \) y \(D_j > 0 \). Se excluye el cero debido a que en este punto el sistema puede volverse inestable dependiendo del número de valores propios con parte real igual a cero (teorema de la variedad central [14]). También se puede concluir que el comportamiento dinámico de la carga introduce restricciones sobre el espacio viable para que las trayectorias del sistema evolucionen de forma estable.

Por otra parte, del análisis del comportamiento del amortiguamiento de las unidades de generación del sistema, \(D_j \), se refuerza la conclusión presentada en la referencia [30] en la que muestran que cuando el amortiguamiento de las unidades de generación es igual a cero se presenta un punto de bifurcación. Esto se evidencia en que cuando el amortiguamiento es positivo el sistema es estable, cuando es igual a cero las trayectorias del sistema son atraídas por órbitas periódicas (los valores propios asociados al amortiguamiento que se hizo cero son puramente imaginarios), y cuando el amortiguamiento es negativo se generan órbitas periódicas inestables y comportamiento oscilatorio no amortiguado asociados a valores propios complejos conjugados con parte real positiva.

Ya que se establecieron las condiciones para que el sistema eléctrico de potencia multimáquina sea estable, en la siguiente sección se hará una aproximación matemática al concepto de estabilidad total y se aplicará al sistema eléctrico de potencia modelado como un sistema de Hamilton. Esto con el fin de determinar las condiciones dentro de la región de estabilidad que se deben cumplir para que el sistema sea estable ante perturbaciones. Por otra parte, se mostrará que cuando las trayectorias del sistema se encuentran por fuera del dominio de la realización de Hamilton el sistema es inestable.

4.3 Estabilidad Total en Sistemas Eléctricos de Potencia

Como se mostró en la sección anterior, la región de estabilidad para sistemas de potencia que alimentan cargas con respuesta dinámica ante perturbaciones tipo escalón en el voltaje de alimentación, ver figura 6, está dada por la intersección de todas las condiciones que satisfacen que \(f(Q_d, v_k) > 0 \) y \(D_j > 0 \).

Sin embargo cuando el sistema es perturbado, cómo se puede garantizar que se conservan las mismas características de estabilidad. Para ello sirve el análisis de estabilidad total.

El análisis de estabilidad total se basa en la definición de sistema totalmente estable que establece que dado un sistema autónomo de la forma 3.6 y uno
perturbado de la forma 3.7, el equilibrio del sistema no perturbado es totalmente estable si para cada \(\varepsilon > 0 \) existen números positivos \(\delta_1(\varepsilon) \) y \(\delta_2(\varepsilon) \) tales que para \(\|x\| < \varepsilon \) se satisfagan las restricciones 3.8 y 3.9 [15].

\[
\begin{align*}
x &= f(x,t) \\
x &= f(x,t) + g(x,t) \\
\|x_0\| < \delta_1(\varepsilon) \\
\|g(x,t)\| < \delta_2(\varepsilon)
\end{align*}
\]

Como la aplicación de esta definición a los sistemas reales generalmente no es posible debido a que se requiere conocer las trayectorias del sistema, se han desarrollado algunos teoremas que mediante la aplicación de la teoría de Lyapunov facilitan establecer si un punto de equilibrio o una trayectoria es totalmente estable o no. Uno de estos teoremas dice que si existe una función de Lyapunov (una función definida positiva cuyas derivadas son definidas negativas), cuyas derivadas parciales \(\frac{\partial V(x,t)}{\partial x} \) se encuentran acotadas en una región \(G \), entonces el sistema es totalmente estable [15].

El uso de este teorema para el análisis de sistemas reales se dificulta debido a que es necesario encontrar una función de Lyapunov para el sistema. Sin embargo en sistemas que se puedan formular como un sistema de Hamilton la función de Lyapunov está dada, ya que es la misma función de Hamilton del sistema, por ello este análisis puede ser aplicado a los sistemas eléctricos de potencia. Recuerde que en el capítulo anterior (Modelamiento de Sistemas Dinámicos), se demostró que un sistema eléctrico de potencia multimáquina puede ser modelado como un sistema disipativo de Hamilton de puertos controlados.

Aplicando el análisis de estabilidad total a sistemas eléctricos de potencia multimáquina encontramos que tomando como función de Lyapunov la función de Hamilton del sistema, \(H(x,z) = E_i(x,z) + E_p(x,z) \), con \(E_i(x,z) \) y \(E_p(x,z) \) definidas como 2.27 y 2.28 respectivamente, donde \(H(x,z) > 0 \), entonces

\[
\frac{dH(x,z)}{dt} = \frac{\partial H^T(x,z)}{\partial x} \left[J(x,z) - R(x,z) \right] \frac{\partial H(x,z)}{\partial x}
\]

Esta es una forma cuadrática en \(\frac{\partial H(x,z)}{\partial x} \). Excluyendo los puntos críticos de energía, \(\frac{\partial H(x,z)}{\partial x} \neq 0 \), esta forma cuadrática es definida negativa en la región de estabilidad que se encontró mediante el análisis de bifurcaciones, sección
anterior, ya que en esta región los valores propios de la matriz
\[
[J(x,z)-R(x,z)]
\]
son menores que cero. Además, como el sistema es estable en esta región, las derivadas parciales de la función de Lyapunov, \(\frac{\partial H(x,z)}{\partial x} \), están acotadas luego se cumplen todas las condiciones del teorema de estabilidad total y se puede concluir que en la región en la que se cumplen las restricciones de estabilidad encontradas mediante el análisis de bifurcaciones y que además se satisface que \(H(x,z)>0 \) y que \(\frac{\partial H(x,z)}{\partial x} \neq 0 \) los sistemas eléctricos de potencia multimáquina son totalmente estables siempre que las perturbaciones estén acotadas, es decir que \(\| \tau_n \frac{dQ_d}{dt} \| \leq \delta_2 (\epsilon) \) (recuerde que el término asociado a las perturbaciones en el modelo del sistema de potencia extendido es \(\tau_n \frac{dQ_d}{dt} \), ecuaciones 26 y 27), y sus trayectorias convergen a la región definida por \(\| x \| < \epsilon \).

La existencia de la región de estabilidad total no garantiza que en ella el desempeño del sistema sea el mejor, sin embargo define una región en la que las perturbaciones no afectan significativamente el comportamiento del sistema. Además, el grado de deterioro en el desempeño del sistema y la magnitud máxima para la norma de la perturbación dependen del valor seleccionado para \(\epsilon \).

Se puede demostrar que los resultados anteriormente presentados son equivalentes a los obtenidos tomando como función candidata de Lyapunov \(H^2(x,z) \), que es una función definida positiva que no necesita ser restringida como la que se empleó para obtener los presentados en esta sección.

4.4 Resumen

En este capítulo se introdujo el concepto de estabilidad de sistemas dinámicos y se mostraron algunas herramientas desarrolladas a partir de su definición para el análisis de sistemas. En la figura 7 se presenta un cuadro resumen con las herramientas de estabilidad mencionadas anteriormente. En esta figura se resaltan en azul las herramientas utilizadas en la realización de este trabajo.

Además se muestra la aplicación del análisis de bifurcaciones y el análisis de estabilidad total en sistemas eléctricos de potencia modelados como sistemas de Hamilton. De la realización del análisis de bifurcaciones se obtuvo como resultado las características que se deben cumplir para que un sistema eléctrico de potencia que alimenta cargas que responden dinámicamente ante perturbaciones en el voltaje de alimentación sea estable. Del análisis de
estabilidad total se obtuvo como resultado las condiciones bajo las cuales los sistemas eléctricos de potencia que alimentan cargas con respuesta dinámica son totalmente estables.

Para obtener estos resultados se utilizó la representación como un sistema de Hamilton del sistema de potencia multimáquina descrita por la ecuación 2.29. Al emplear este sistema se pudo concluir que el principal efecto del comportamiento dinámico de la carga en la evolución de las trayectorias de los sistemas eléctricos de potencia es introducir nuevas condiciones que delimitan o restringen más el espacio de estados del sistema que en el caso en que se considera la demanda de potencia activa y reactiva en los nodos de carga como constante.

Con estos análisis se aporta una nueva metodología para el análisis de sistemas eléctricos de potencia como sistemas dinámicos, en particular para el análisis de estabilidad.
5 Caso de Estudio

5.1 Introducción

Luego de hacer el estado del arte en el modelamiento de la carga y determinar cuales son los problemas y soluciones en este campo, de modelar los sistemas eléctricos de potencia multimáquina preservando su estructura o topología (sin hacer simplificaciones o utilizar equivalentes de la teoría de circuitos), de transformar los sistemas eléctricos de potencia en sistemas disipativos de Hamilton de puertos controlados y de analizar su estabilidad, ha llegado el momento de validar los resultados obtenidos en los capítulos previos y corroborar las conclusiones obtenidas en ellos.

Con este fin, se simuló un sistema eléctrico de prueba que tiene nueve nodos, tres nodos de generación y tres nodos de carga, dos estáticos modelados como impedancia constante y uno dinámico modelado mediante la ecuación 2.17, conectados con una topología tipo anillo, similar a la que se emplea en el sistema eléctrico colombiano, como se muestra en la figura 8.

![Diagrama esquemático del sistema eléctrico de potencia de prueba](image)

Para la simulación se empleó el software Matlab – Simulink, y la rutina de integración ode 23 stiff/trapezoidal. Esta rutina de integración fue seleccionada...
luego de emplear otras rutinas de integración tanto stiff como no stiff, teniéndose los mejores resultados en tiempo de simulación y resolución de las gráficas con la rutina seleccionada.

Luego de hacer una somera descripción del sistema de prueba, el software utilizado y la rutina de integración empleada, en las siguientes secciones se describe el caso de estudio, los modelos empleados para cada elemento del sistema de prueba y las condiciones iniciales que se tomaron para la simulación y la forma de hayarlas. Además se presentan los resultados obtenidos en las simulaciones y se hace una discusión de ellos.

5.2 Caso de Estudio

Como se mencionó en la introducción, para validar los resultados encontrados con la realización de este trabajo, se empleó como sistema de prueba un sistema eléctrico de potencia de nueve nodos correspondiente al sistema WSCC (Western Systems Coordinating Council) mostrado en la figura 8. En este sistema se modelaron las unidades de generación, las líneas de transmisión, los transformadores y las cargas.

Con fines de simulación, las unidades de generación fueron modeladas usando el modelo que resulta de aplicar la transformada de Park al modelo de la máquina en coordenadas naturales, tomando como marco de referencia el rotor. Este modelo está descrito por las ecuaciones 4.1 a 4.7. Se seleccionó este modelo porque es más cercano al comportamiento real de las unidades de generación, además porque utilizar modelos más cercanos a la realidad ayuda a ver que tan dependientes son los resultados obtenidos en los capítulos anteriores de las simplificaciones hechas para facilitar el análisis y la viabilidad de implementar estos resultados en sistemas reales. Además en la referencia [19] se demuestra que las unidades de generación modeladas de esta forma se pueden transformar en un sistema de Hamilton.

\[
\begin{align*}
\dot{v}_qs &= -r_s i_{qs} + \frac{\omega_s}{\omega_b} \psi_{qs} + \frac{1}{\omega_b} \frac{d}{dt} \psi'_{qs} \\
\dot{v}_ds &= -r_s i_{qs} - \frac{\omega_s}{\omega_b} \psi_{qs} + \frac{1}{\omega_b} \frac{d}{dt} \psi'_{ds} \\
\dot{v}_{0s} &= -r_s i_{0s} + \frac{1}{\omega_b} \frac{d}{dt} \psi_{0s} \\
\dot{v}_{kq1} &= \frac{1}{\omega_b} \frac{d}{dt} \psi'_{kq1} \\
\dot{v}_{kq2} &= \frac{1}{\omega_b} \frac{d}{dt} \psi'_{kq2}
\end{align*}
\]
En este modelo, las comillas o primas en algunas de las variables de este modelo indican que estas cantidades están referenciadas, además el superíndice r denota que el marco de referencia es el rotor. Como parte del modelo de las unidades de generación se incluyeron sus sistemas de control de voltaje (incluyendo el regulado por sobre excitación) y de velocidad. Ambos sistemas de control fueron tomados de la referencia [11]. En las figuras 9 y 10 se presentan los diagramas de bloques del regulador de tensión y de velocidad, respectivamente.

Figura 9. Diagrama de bloques del regulador automático de voltaje empleado en este trabajo.
Figura 10. Diagrama de bloques del regulador de velocidad empleado en este trabajo.

Las líneas de transmisión fueron modeladas mediante su representación π. Se empleó una longitud de longitud 100 Km, dividida en tramos de 10 Km para cada una de ellas. El modelo para cada tramo de la línea de transmisión está descrito por las ecuación 4.8.

\[
\begin{bmatrix}
\bar{T}(x) \\
\bar{V}(x)
\end{bmatrix}
= \begin{bmatrix}
\cosh(\gamma \delta) & Z_c \sinh(\gamma \delta) \\
\frac{1}{Z_c} \sinh(\gamma \delta) & \cosh(\gamma \delta)
\end{bmatrix}
\begin{bmatrix}
\bar{V}_R \\
\bar{I}_R
\end{bmatrix}
\] \hspace{1cm} (4.8)

Donde \(\gamma = \sqrt{(R + j\omega L)(G + j\omega C)} \), y \(Z_c = \frac{(R + j\omega L)}{(G + j\omega C)} \), siendo \(j \) el operador complejo (\(j = \sqrt{-1} \)).

Los transformadores trifásicos fueron modelados a partir de transformadores monofásicos como el que se muestra en la figura 11, tomando en el secundario un solo devanado.

Figura 11. Circuito equivalente empleado para el modelamiento de los transformadores
Las cargas fueron modeladas usando el modelo dinámico propuesto por Hill en [17], ecuación 2.17. En este modelo es necesario definir cuales funciones se van a emplear para el modelado de la respuesta transitoria y de estado estable de la carga, además de determinar el valor de los diferentes parámetros que hacen parte del modelo.

Al hacer el estado del arte presentado en primer capítulo de este trabajo, se notó que en este modelo se ha empleado ampliamente en la literatura la estructura exponencial descrita por las ecuaciones 4.9 y 4.10 para modelar el comportamiento de la demanda de potencia activa y reactiva en estacionario, este resultado está reforzado en la referencia [32] dónde se afirma que comúnmente las funciones que representan el comportamiento de estado estable de la carga son las mismas que las empleadas en el modelo exponencial de carga, por tal motivo en este trabajo se emplean las mismas funciones.

\[
P_p(V) = C_p V^\alpha \tag{4.9}
\]
\[
Q_p(V) = C_q V^\beta \tag{4.10}
\]

Del estado del arte presentado en el primer capítulo de este trabajo también se notó que existen varias alternativas para el modelado de la respuesta transitoria de la carga. En este caso no se recomienda una en particular, cada autor utiliza una de las reportadas en la literatura. Una de estas estructuras es la descrita por las ecuaciones 4.11 y 4.12. Estas fueron propuestas por Hill en [17] y fueron empleadas por Valencia et al en la referencia [44] para desarrollar una herramienta de identificación en línea de los parámetros del modelo dinámico de carga que estamos describiendo, ecuación 2.17. Por los motivos anteriormente presentados y, como se había explicado anteriormente, pensando en la posibilidad de implementar los resultados obtenidos en este trabajo en un sistema real, se usaron estas funciones para modelar el comportamiento transitorio de la carga.

\[
K_p(V) = k_p \tag{4.11}
\]
\[
K_q(V) = k_q \tag{4.12}
\]

Aplicando la transformación definida por las expresiones 2.12 y 2.13 al modelo de carga conformado por las expresiones 4.9 a 4.12, cuya estructura es la de las expresión 2.17, y remplazando en la expresiones 2.22 y 2.23, se tiene que el valor propio asociado al comportamiento dinámico de la carga esta dado por la expresión 4.13 y la potencia activa demandada en los nodos de carga como función del voltaje y de potencia reactiva demandada está descrita por la expresión 4.14. Con estas expresiones se culmina el modelo de simulación empleado para validar las conclusiones obtenidas en el capítulo anterior sobre la estabilidad de los sistemas eléctricos de potencia.
\[\lambda_2 = -\frac{e^{-v}}{Q_d k_q} \left(C_q e^{-\beta v} - Q_d \right) \]
\[\tau_p \frac{dP_d}{dt} + P_d = C_q e^{-\alpha v} + k \left(Q_d - C_q e^{-\beta v} \right) \]

Luego de mostrar los modelos empleados para cada uno de los elementos que conforman el sistema eléctrico de potencia de prueba, se pasará a mostrar y discutir los resultados de las simulaciones. Los parámetros de las unidades de generación, los reguladores, los transformadores, las líneas de transmisión y las cargas están en el anexo 1.

Como condiciones iniciales para las simulaciones se tomaron 200 MW y 60 $MVAR$ en cada uno de los nodos de carga. Con esta información y tomando como referencia el nodo de generación uno (ver figura 8), se encontraron los demás valores iniciales de las variables del sistema eléctrico de prueba al resolver el flujo de carga asociado a este sistema.

Con este procedimiento se encontró un punto de equilibrio estable para el sistema. En este punto el sistema permanece durante diez segundos para mostrar que verdaderamente el punto de equilibrio es estable y cumple las restricciones de estabilidad encontradas en el capítulo anterior. Luego se introduce una perturbación al sistema. Esta perturbación consiste en un incremento lineal en la demanda de potencia reactiva en el nodo que alimenta la carga dinámica. El incremento se hace constantemente con una pendiente de 0.0027 pu, en una base de 370 MVA, hasta que el sistema alcanza su máximo punto de cargabilidad y colapsa. Recuerde que tanto la trayectoria del voltaje como la potencia activa demandada en el nodo que alimenta la carga dinámica dependen de la demanda de potencia reactiva en este nodo (la potencia reactiva demandada es un parámetro del modelo del sistema eléctrico de potencia).

Lo que se pretende al llevar el sistema a su máximo punto de cargabilidad es mostrar es que cuando la trayectoria del voltaje en el nodo de carga que alimenta una carga dinámica sale del dominio de la realización dissipativa de Hamilton descrita por la ecuación 2.29, el sistema eléctrico de potencia se desestabiliza. En la siguiente sección se presentan los resultados de simulación orientados a reforzar esta conclusión y los resultados obtenidos al aplicar el análisis de bifurcaciones a los sistemas de potencia multimáquina modelados como sistemas de Hamilton de la forma 2.29.

5.3 Resultados

Como se mencionó en la sección anterior, con el fin de validar los resultados obtenidos mediante el análisis de bifurcaciones hecho en el capítulo anterior,
se simuló el sistema eléctrico de potencia de prueba que se muestra en la figura 8. Cada elemento de este sistema se modeló como se describió anteriormente. Como ya se mostró, la simulación consistió en llevar al límite de estabilidad el sistema de prueba mediante un incremento lineal en la demanda de potencia reactiva en el nodo que alimenta la carga dinámica, que comienza a los diez segundos de simulación.

Al hacer la simulación del sistema de prueba siguiendo el procedimiento ya descrito se encontró que, como se esperaba, el fenómeno de inestabilidad aparece cuando el valor propio asociado al comportamiento dinámico de la carga, ecuación 4.13, toma un valor positivo. Esto se evidencia en la figura 11.

En la figura 11 se muestra que a medida que avanza la simulación el voltaje en el nodo que alimenta la carga dinámica va disminuyendo hasta que el fenómeno de inestabilidad se presenta y el sistema colapsa. Esta disminución en el voltaje se debe a la incapacidad del sistema de transportar toda la energía reactiva que se requiere para suplir la demanda en este nodo y así mantener el nivel de voltaje dentro de los límites seguros.

![Figura 11. Trayectoria del voltaje en el nodo que alimenta la carga dinámica cerca del límite de estabilidad del sistema de prueba.](image)

Como se ve en la figura 11, el fenómeno de inestabilidad de tensión se presenta cuando el valor propio asociado al comportamiento dinámico de la carga toma valor positivo. Pero el fenómeno de inestabilidad no sólo se presenta en el nodo que alimenta la carga dinámica, en los nodos que alimentan cargas estáticas también se presenta el mismo fenómeno. En las figuras 12 y 13 se muestra como al tomar valor positivo el valor propio asociado al comportamiento dinámico de la carga el voltaje en estos nodos también exhibe un comportamiento inestable.
Los resultados anteriormente presentados, figuras 11 a 13, resultan interesantes porque muestran que en los sistemas eléctricos de potencia los fenómenos de inestabilidad pueden transmitirse de un punto del sistema a otro. Esta característica es muy común en los sistemas de múltiples partículas, en los que se habla de la velocidad de infección en la red como la tasa a la que los elementos de la red se desestabilizan luego de que uno de sus elementos lo hace. Además resulta interesante que se transmita el fenómeno de inestabilidad de un nodo de carga a otro teniendo en cuenta que los nodos de carga están modelados de forma diferente y que los nodos estáticos están modelados como impedancia constante, que es el tipo de carga que menos le exige al sistema.

Las gráficas 11 a 13 también confirman los resultados encontrados mediante el análisis de bifurcaciones y refuerzan la conclusión que se había obtenido al hacer este análisis que establece que cuando las trayectorias del sistema salen
del dominio de la realización disipativa de Hamilton descrita por la ecuación 2.29, el sistema presenta un comportamiento inestable. En el caso de la trayectoria del voltaje de alimentación de la carga dinámica esto se presenta cuando el valor propio asociado a esta trayectoria, ecuación 3.3 para el caso general y ecuación 4.13 para el caso de estudio, toma un valor positivo ya que en este punto la matriz $R(x,z)$ de la realización de Hamilton, ecuación 2.29, deja de ser semidefinida positiva.

Los resultados anteriormente presentados se muestran de forma más clara en la figura 14. En esta figura se muestra la evolución de la trayectoria del voltaje de alimentación de la carga dinámica con respecto a la evolución del valor propio asociado al comportamiento dinámico de la carga que alimenta este nodo. En esta figura, parte superior, el voltaje empieza con una magnitud de 1 pu y el valor propio tiene un valor negativo. A medida que la demanda de potencia reactiva se incrementa el voltaje comienza a decaer debido a la incapacidad del sistema de transportar la energía reactiva demandada. Este suceso va acompañado por el incremento en el valor del valor propio hasta que su valor decrece y luego crece de forma asintótica tomando un valor positivo e indicando el colapso del sistema (este punto corresponde con el punto en el que la trayectoria del voltaje decrece de forma asintótica a cero, figuras 11 y 14).

![Figura 14. Trayectoria del voltaje de alimentación de la carga dinámica respecto al valor propio asociado al comportamiento dinámico de esta carga (arriba). Comportamiento del valor propio a medida que la demanda de potencia reactiva incrementa (abajo).](image)

En la figura 14 parte inferior se muestra el comportamiento del valor propio asociado a la trayectoria del voltaje de alimentación de la carga dinámica a medida que se incrementa la demanda de potencia reactiva en este nodo. Allí se puede ver que el incremento en la demanda de potencia reactiva hace que el valor propio tome cada vez valores más cercanos a cero hasta que la
potencia toma un valor tal que el sistema colapsa. En este punto nuevamente se aprecia que el valor propio toma un valor positivo.

El comportamiento descrito anteriormente y mostrado en la figura 14 también se presenta en los demás nodos de carga, sin embargo por la característica de la carga en estos nodos, impedancia constante, el comportamiento del voltaje del nodo y de la potencia reactiva demandada es similar. En el caso del voltaje se ve que, tanto en el nodo dos como en el nodo tres de carga (ver figura 8), el valor inicial es $1\, pu$, pero a medida que la demanda de potencia reactiva en el nodo que alimenta la carga dinámica aumenta el voltaje en estos nodos también decae hasta que el valor propio toma un valor positivo y el sistema colapsa. Como la demanda de potencia reactiva en estos nodos depende del voltaje, al caer el valor del voltaje también cae la demanda de potencia reactiva. Como consecuencia de esto el colapso en estos nodos de carga implica cero transferencia de potencia tanto activa como reactiva a estos puntos de la red, lo que en un sistema real implicaría desabastecimiento de energía eléctrica a algunas zonas de carga del sistema interconectado. En las figuras 15 y 16 se muestran los resultados descritos anteriormente.

![Gráficos](image.png)

Figura 15. Comportamiento del voltaje de alimentación (arriba) y de la potencia reactiva demandada (abajo) en el nodo de carga 2 (ver figura 8).
Figura 16. Comportamiento del voltaje de alimentación (arriba) y de la potencia reactiva demandada (abajo) en el nodo de carga 3 (ver figura 8).

Los resultados mostrados en las figuras 11 a 16 validan los resultados obtenidos al hacer el análisis de bifurcaciones del sistema eléctrico de potencia modelado como un sistema de Hamilton, ecuación 2.29. Además refuerza la conclusión con la que terminamos el anterior capítulo que establece que cuando una de las trayectorias del sistema eléctrico de potencia, en este caso la del voltaje que alimenta la carga dinámica, se sale del dominio de la realización de Hamilton de finida por la ecuación 2.29, el sistema exhibe un comportamiento inestable. También se obtuvo una conclusión adicional y es que el fenómeno de inestabilidad puede afectar otros puntos del sistema, no necesariamente vecinos al punto inestable, igual a como pasa en los sistemas de múltiples partículas que interactúan entre sí.

Esto le da a los sistemas eléctricos de potencia una cualidad exclusiva de los sistemas de Hamilton y es que en ellos pueden coexistir dinámicas estables e inestables en un momento dado. Esto es fácil de demostrar observando la evolución del voltaje en los nodos de generación. En estos nodos los recursos de energía reactiva se encuentran limitados sólo por la capacidad de las unidades de generación que lo alimentan por tal motivo la única forma de que estos nodos presenten inestabilidad en voltaje es la incapacidad de la unidad de generación de entregar la energía demandada, mientras que en los demás nodos la inestabilidad puede llegar por limitaciones de la red para transportar la energía reactiva demandada por el nodo. Este fenómeno se muestra en la figura 17.
Figura 17. Voltaje en las terminales (arriba) y corriente de línea (centro) de la unidad de generación 1, cerca del punto de inestabilidad del nodo que alimenta la carga dinámica.

En la figura 17 se muestra como a pesar de que el sistema se encuentra próximo a la inestabilidad la magnitud y la frecuencia de la onda de voltaje en las terminales del generador no se han afectado. La distorsión de estas características de la onda de voltaje sólo se presenta cuando el método numérico empleado para las simulaciones diverge. Esto ocurre poco después de que el sistema alcanza su máximo punto de cargabilidad y colapsa.

La característica anteriormente descrita y mostrada en la figura 17 hace que los sistemas de control de las unidades de generación no sean útiles para prevenir el colapso del sistema en los nodos de carga, ya que los sistemas de control sólo responden a cambios locales, sin embargo si respondieran a los problemas de inestabilidad en los nodos que alimentan cargas dinámicas la red no tendría la capacidad para transportar la energía necesaria para evitar el colapso.

En las figuras 18 a 20 se muestra la evolución de las variables controladas en cada unidad de generación (potencia mecánica, voltaje y corriente de campo), respecto la evolución del valor propio asociado al comportamiento dinámico de la carga. En estas figuras se ve que a pesar de que el sistema evoluciona hacia el colapso, las acciones de control son suaves debido a que el fenómeno de inestabilidad no afecta significativamente los nodos de generación. Esta condición se mantiene hasta que el sistema alcanza su máximo punto de
cargabilidad y colapsa. En este punto las variables controladas alcanzan sus valores máximos permitidos y los sistemas de control se saturan.

En el caso de la potencia mecánica se observa en los tres casos esta empieza en un valor bajo. Luego de un transitorio alcanza un valor estable y a partir de este valor crece con una pendiente poco propiciada hasta que el sistema colapsa. Algo similar pasa con el voltaje de campo. Este también comienza en un valor bajo. Luego de un transitorio alcanza un valor estable y luego comienza a crecer lentamente hasta que la demanda de potencia reactiva es tal que debe el control de voltaje reacciona de forma agresiva para mantener estable el voltaje en terminales del generador pero esto no impide que el voltaje en los nodos de carga colapse. Por último se puede ver que la corriente de campo presenta un pequeño transitorio al inicio de la simulación, pero al igual que las otras variables controladas su valor comienza a crecer hasta que el voltaje en los nodos de carga del sistema colapsa.

Para las tres variables y en los tres casos, es posible ver que su incremento se debe a que el valor propio asociado al comportamiento dinámico de la carga toma valores cada vez más cercanos a cero a medida que la potencia reactiva demandada en el nodo que alimenta la carga dinámica aumenta. También es posible ver, como se mencionaba anteriormente, que las acciones de control no son suficientes para evitar el colapso del voltaje en los nodos de carga.

![Figura 18. Comportamiento de la potencia mecánica (arriba), el voltaje y la corriente de campo (centro y abajo respectivamente) del generador 1 respecto al comportamiento del valor propio asociado a la trayectoria del voltaje que alimenta la carga dinámica.](image-url)
Figura 19. Comportamiento de la potencia mecánica (arriba), el voltaje y la corriente de campo (centro y abajo respectivamente) del generador 2 respecto al comportamiento del valor propio asociado a la trayectoria del voltaje que alimenta la carga dinámica.
Figura 20. Comportamiento de la potencia mecánica (arriba), el voltaje y la corriente de campo (centro y abajo respectivamente) del generador 3 respecto al comportamiento del valor propio asociado a la trayectoria del voltaje que alimenta la carga dinámica.

Como se ha presentado a lo largo de esta sección, los resultados mostrados en este capítulo validan los resultados y conclusiones obtenidas en el capítulo anterior al aplicar el análisis de bifurcaciones a los sistemas eléctricos de potencia multimáquina modelados como sistemas de Hamilton, ecuación 2.29. Además se mostró que los sistemas de control con que cuentan las unidades de generación no ayudan a evitar el colapso del sistema.

Con la validación de los resultados obtenidos en este trabajo se concluye la investigación desarrollada para determinar cuál es el efecto que el comportamiento dinámico de la carga tiene sobre la estabilidad de los sistemas eléctricos de potencia, en particular sobre la estabilidad de tensión. En el próximo capítulo se presentan las conclusiones y trabajos futuros, y en el capítulo siguiente los anexos.

5.4 Resumen

En este capítulo se presentó el caso de estudio empleado para la validación de los resultados y conclusiones obtenidos mediante el análisis de bifurcaciones
aplicado a sistemas eléctricos de potencia modelados como sistemas de Hamilton, ecuación 2.29.

Luego de presentar el caso de estudio, se describieron los modelos de cada uno de los elementos del sistema eléctrico de potencia de prueba. Los elementos modelados fueron las unidades de generación, los transformadores, las líneas de transmisión y las cargas. Las cargas fueron modeladas de forma estática y dinámica, ver figura 8. A partir del modelo dinámico de carga empleado se encontró la función que permitió calcular el valor del valor propio asociado a la trayectoria del voltaje que alimenta la carga dinámica, ecuación 4.14.

Esta expresión permitió validar la conclusión obtenida mediante el análisis de bifurcaciones que establece que cuando las trayectorias del sistema eléctrico de potencia se encuentran por fuera del dominio de la realización disipativa de Hamilton, ecuación 2.29, el sistema exhibe un comportamiento inestable. Además se mostró que la inestabilidad en un punto del sistema se puede propagar a otros puntos de la red, no necesariamente vecinos. Esto le da a los sistemas eléctricos de potencia las características en su comportamiento similares a las que tienen los sistemas de múltiples partículas que interactúan entre sí.

De las simulaciones también se logró inferir que en los sistemas eléctricos de potencia pueden coexistir dinámicas estables e inestables, característica fundamental que presentan en su comportamiento los sistemas de Hamilton. Esta característica hace que los sistemas de control de las unidades de generación no ayuden a prevenir la aparición de fenómenos de inestabilidad en los demás nodos del sistema.
6 Conclusiones y Trabajo Futuro

6.1 Conclusiones

En este trabajo se propuso una nueva realización disipativa de Hamilton para sistemas de potencia. Lo novedoso de esta realización es que tiene en cuenta el comportamiento dinámico de la carga. A partir de este resultado se demostró que el comportamiento dinámico de la carga restringe el espacio de estados viable para las trayectorias del sistema. Además se demostró que la dinámica de la carga introduce puntos de bifurcación en la trayectoria del voltaje que la alimenta. Estos resultados fueron validados mediante simulación numérica.

También se mostró que amortiguamiento introduce puntos de bifurcación en la trayectoria de la velocidad y del ángulo de las unidades de generación. Lo interesante de estos puntos de bifurcación es que están asociados a la aparición de comportamientos oscilatorios no amortiguados en el sistema. Debido a la dificultad para calcular el amortiguamiento de las unidades de generación, estos resultados no pudieron ser validados mediante simulación, sin embargo refuerzan las conclusiones obtenidas y validadas mediante simulación en la referencia [30]. En esta referencia establecen que cuando el amortiguamiento de las unidades de generación es igual a cero se presenta un punto de bifurcación que da origen a la aparición de órbitas periódicas inestables de diferentes periodos que pueden llevar a la aparición de atractores caóticos.

Por otra parte, mediante simulación numérica se mostró que la inestabilidad en un nodo de carga puede ser transmitida a otros nodos de carga provocando un fraccionamiento del sistema y finalmente su colapso en varios puntos. Esto le da al comportamiento de los sistemas eléctricos de potencia características similares a las del los sistemas de múltiples partículas que interactúan entre sí. Por tal motivo modelar los sistemas eléctricos de potencia como este tipo de sistemas puede ayudar a comprender mejor la gran cantidad de fenómenos que en ellos se presentan.

En las simulaciones también se encontró que los sistemas de control no ayudan a evitar el colapso del sistema debido a que los fenómenos de inestabilidad que se presentan en los nodos de carga del sistema no afectan significativamente el comportamiento de las variables en los nodos de generación. De esto se concluyó lo siguiente:

1. Que el problema de estabilidad de tensión en los nodos de carga es un problema netamente de transporte de energía reactiva a través de la red, por tal motivo los sistemas de control que tienen las unidades de generación no ayudan a evitar el colapso del sistema.
2. En los sistemas eléctricos de potencia pueden coexistir dinámicas estables e inestables en un momento dado. Esto le da al comportamiento de los sistemas de potencia la principal característica de los sistemas de Hamilton. Teniendo esto en mente se cuenta con una nueva herramienta para el modelamiento, análisis y control de los sistemas eléctricos de potencia.

3. Analizar los sistemas eléctricos de potencia como sistemas de múltiples partículas que interactúan entre sí y modelarlos como sistemas de Hamilton ayudaría a comprender mejor el comportamiento de estos sistemas y los diferentes fenómenos que en ellos se presentan.

Por último se encontraron condiciones para delimitar la región de estabilidad para sistemas eléctricos de potencia que alimentan cargas que presentan un comportamiento dinámico. A partir de la definición de la región de estabilidad fue posible encontrar un indicador de estabilidad que relaciona la demanda de potencia reactiva, el voltaje en el nodo de carga y las características de estado estacionario y estado transitorio de la carga. Este indicador de estabilidad fue validado mediante simulación numérica y los resultados obtenidos fueron los esperados, aunque aún se deben hacer más ensayos para entender mejor la relación que para este indicador se plantea en este trabajo.

De este indicador se logró obtener también una relación entre el valor propio asociado al comportamiento dinámico de la carga, el voltaje que lo alimenta y la potencia reactiva demandada. Esto es de gran importancia para el análisis de sistemas eléctricos de potencia ya que muchas herramientas se basan en el análisis de valores propios pero aún no se cuenta con una relación que permita determinar el valor del valor propio a que demanda de potencia corresponde.

De las conclusiones anteriormente presentadas se puede inferir que en términos generales este trabajo sirvió para desarrollar una nueva metodología de análisis de sistemas eléctricos de potencia multimáquina que alimentan cargas que exhiben comportamiento dinámico ante perturbaciones en el voltaje de alimentación. Esta metodología es independiente de la topología y del grado de detalle que se emplee para modelar los elementos que conforman el sistema a analizar. Sólo está limitada al modelamiento dinámico de la carga aunque no a las funciones que se elijan para representar el comportamiento transitorio y de estado estacionario de la carga. Sin embargo si se emplean funciones diferentes a las utilizadas en este trabajo se requiere obtener las expresiones que permiten delimitar la región de estabilidad hallada en este trabajo mediante el análisis de bifurcaciones.

Lo más interesante de esta metodología es que debido a su relativa simplicidad es posible implementarla para el monitoreo descentralizado de sistemas eléctricos de potencia reales, ya que para lograr esto se necesita una herramienta de identificación en línea de los parámetros del modelo de carga, como la que se presenta en la referencia [44], y el cálculo del valor propio asociado a su comportamiento dinámico.
6.2 Trabajo Futuro

Con la realización de este trabajo se hicieron algunos aportes en el análisis de sistemas eléctricos de potencia, pero a su vez se abrieron nuevos campos de investigación en los temas relacionados con estos sistemas. A continuación se presentan los principales temas de investigación que se derivan de la realización de este trabajo:

✓ Diseño de esquemas de control, principalmente en sistemas de compensación, que ayuden a evitar el colapso del sistema de potencia mediante el conocimiento del estado de la red.

✓ Formular funciones de energía que tengan en cuenta variables continuas y discretas. Esto con el fin de ir complementando el análisis hecho en este trabajo al tener en cuenta las dinámicas discretas principales de los sistemas de potencia, como las de los sistemas de compensación y las de los esquemas de protección.

✓ Formular un modelo general para los sistemas de potencia, y su representación en términos de los modelos de Hamilton, donde las restricciones no provengan de los flujos de carga sino de las leyes de Kirchov, ya que esto facilitaría entender la interacción que existe entre la carga y la red de transmisión de potencia.

✓ Validar mediante simulaciones las conclusiones asociadas a la aproximación matemática hecha en este trabajo a la estabilidad total de sistemas eléctricos de potencia.

✓ Modelar el comportamiento de la carga como la relación entre la potencia aparente y el voltaje y la frecuencia, ya que esto permite tener un acercamiento al problema real del modelado de la carga, y a su vez obtener resultados más aproximados al comportamiento real del sistema.

✓ Encontrar expresiones que permitan calcular o estimar el valor del amortiguamiento de las unidades de generación. En la referencia [30] han trabajado algo en esta muestran algunas expresiones para determinar en un sistema generador barra infinita cuando hay un bajo amortiguamiento. Esto sería de gran utilidad para validar las conclusiones obtenidas en este trabajo relacionadas con este parámetro del sistema.
7 Bibliografía

[35] Nguyen Trung Nghia, Ho Dac Loc, .Dynamic Load Modelling in Power Systems.. Ho Chi Minh University of Technology, Faculty of Electronic and electricity Engineering.

Anexos

Anexo 1: Parámetros de los modelos de simulación

En este anexo se presentan los parámetros empleados para la simulación del sistema de prueba. Los valores de los parámetros que se presentan en este anexo fueron tomados de la referencia [11]. En las tablas 1 y 2 se presentan los valores de los parámetros de los sistemas de control. En la tabla 1 los parámetros del regulador automático de voltaje y del sistema de desconexión por sobreexcitación.

Tabla 1. Parámetros del regulador automático de voltaje y del sistema de desconexión por sobreexcitación de las unidades de generación.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_A</td>
<td>$500 , \text{pu}/\text{pu}$</td>
</tr>
<tr>
<td>T_A</td>
<td>$0.03 , \text{s}$</td>
</tr>
<tr>
<td>T_B</td>
<td>$1 , \text{s}$</td>
</tr>
<tr>
<td>T_C</td>
<td>$10 , \text{s}$</td>
</tr>
<tr>
<td>K_{OEL}</td>
<td>$1 , \text{pu}/\text{pu}$</td>
</tr>
<tr>
<td>T_{OEL}</td>
<td>$10 , \text{s}$</td>
</tr>
<tr>
<td>I_{ref}^d</td>
<td>$2.5 , \text{pu}$</td>
</tr>
<tr>
<td>V_{ref}^v</td>
<td>$1.03 , \text{pu}$</td>
</tr>
<tr>
<td>E_{max}</td>
<td>$5 , \text{pu}$</td>
</tr>
<tr>
<td>E_{min}</td>
<td>$-1 , \text{pu}$</td>
</tr>
<tr>
<td>I_{min}</td>
<td>$0 , \text{pu}$</td>
</tr>
</tbody>
</table>

Tabla 2. Parámetros del regulador de velocidad

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_R</td>
<td>$20 , \text{pu}/\text{pu}$</td>
</tr>
<tr>
<td>T_R</td>
<td>$0.04 , \text{s}$</td>
</tr>
<tr>
<td>T_D</td>
<td>$3 , \text{s}$</td>
</tr>
<tr>
<td>T_E</td>
<td>$10 , \text{s}$</td>
</tr>
<tr>
<td>P_{max}</td>
<td>$0.9 , \text{pu}$</td>
</tr>
<tr>
<td>P_{min}</td>
<td>$0 , \text{pu}$</td>
</tr>
<tr>
<td>P_{ref}^p</td>
<td>$280/370 , \text{pu}$</td>
</tr>
</tbody>
</table>

Los parámetros de las unidades de generación y de las líneas de transmisión se presentan en las tablas 3 y 4, respectivamente.

Tabla 3. Parámetros de las unidades de generación
Tabla 4. Parámetros de las líneas de transmisión

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_n</td>
<td>370 MVA</td>
</tr>
<tr>
<td>V_n</td>
<td>20 kV</td>
</tr>
<tr>
<td>f</td>
<td>60 Hz</td>
</tr>
<tr>
<td>X_d</td>
<td>1.9 pu</td>
</tr>
<tr>
<td>X'_d</td>
<td>0.302 pu</td>
</tr>
<tr>
<td>X''_d</td>
<td>0.204 pu</td>
</tr>
<tr>
<td>X_q</td>
<td>1.7 pu</td>
</tr>
<tr>
<td>X''_q</td>
<td>0.3 pu</td>
</tr>
<tr>
<td>X_l</td>
<td>0.193 pu</td>
</tr>
<tr>
<td>T'_d</td>
<td>1.27 s</td>
</tr>
<tr>
<td>T''_d</td>
<td>0.027 s</td>
</tr>
<tr>
<td>T''_q</td>
<td>0.012 s</td>
</tr>
<tr>
<td>R_t</td>
<td>0.0014 pu</td>
</tr>
<tr>
<td>H</td>
<td>9.26 s</td>
</tr>
<tr>
<td>F</td>
<td>0 pu</td>
</tr>
<tr>
<td>p</td>
<td>7 (pairs of poles)</td>
</tr>
</tbody>
</table>

En las tablas 5 y 6 se muestran los valores de los parámetros de los transformadores elevadores y reductores, respectivamente.

Tabla 5. Parámetros de los transformadores elevadores

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_n</td>
<td>380 MVA</td>
</tr>
<tr>
<td>f</td>
<td>60 Hz</td>
</tr>
<tr>
<td>V_i</td>
<td>20 kV</td>
</tr>
<tr>
<td>R_i</td>
<td>0.1896%</td>
</tr>
<tr>
<td>L_i</td>
<td>12.68%</td>
</tr>
</tbody>
</table>
Tabla 6. Parámetros de los transformadores reductores

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_2</td>
<td>400 kV</td>
</tr>
<tr>
<td>R_2</td>
<td>0.1896%</td>
</tr>
<tr>
<td>L_2</td>
<td>12.68%</td>
</tr>
<tr>
<td>R_m</td>
<td>1000 pu</td>
</tr>
<tr>
<td>L_m</td>
<td>500 pu</td>
</tr>
</tbody>
</table>

Los valores de los parámetros de carga tanto dinámica como estática se presentan en las tablas 7 y 8.

Tabla 7. Parámetros del modelo dinámico de carga

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_p</td>
<td>1.2 s</td>
</tr>
<tr>
<td>C_p</td>
<td>0.4856 pu</td>
</tr>
<tr>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td>K_p</td>
<td>0.5 pu</td>
</tr>
<tr>
<td>C_q</td>
<td>0.1457 pu</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
</tr>
<tr>
<td>K_q</td>
<td>0.3 pu</td>
</tr>
</tbody>
</table>

Tabla 8. Parámetros de las cargas estáticas

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia Activa</td>
<td>200 MW</td>
</tr>
<tr>
<td>Potencia Reactiva (Inductiva)</td>
<td>60 MVAR</td>
</tr>
<tr>
<td>Potencia Reactiva (Capacitiva)</td>
<td>0 MVAR</td>
</tr>
</tbody>
</table>
Anexo 2: Publicaciones

Como resultado de la realización de este trabajo también fue posible realizar varios documentos que en este momento se encuentran en su mayoría en la etapa de evaluación previa a su publicación. Unos de estos textos fueron enviados al XIII Congreso Latinoamericano de Control Automático / VI Congreso Venezolano de Automatización y Control, celebrado en Mérida los días 25 a 28 de noviembre de 2009 y al congreso PowerTech 2009, a celebrarse en Bucarest los días 28 de Junio a 2 de Julio de 2009. Los demás textos fueron enviados a las revistas Generation, Transmission and Distribution de la IET y a la IEEE Power Engineering Letters de la IEEE.

Los títulos de los textos y los autores se presentan a continuación:

