Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Entrenamiento de una red neuronal multicapa para la tasa de cambio euro - dólar (eur/usd)

Villamil Torres, Jaime Alberto and Delgado Rivera, Jesús Alberto (2010) Entrenamiento de una red neuronal multicapa para la tasa de cambio euro - dólar (eur/usd). Ingeniería e Investigación; Vol. 27, núm. 3 (2007); 106-117 Ingeniería e Investigación; Vol. 27, núm. 3 (2007); 106-117 2248-8723 0120-5609 .

Texto completo

[img]
Vista previa
PDF
4MB

URL oficial: http://revistas.unal.edu.co/index.php/ingeinv/arti...

Resumen

Tanto para los inversionistas como para las autoridades económicas es necesario que se desarrolle una herramienta matemática que logre dar cuenta de la dirección de una variable como el tipo de cambio (el precio relativo entre dos monedas). Muchos de los mecanismos usados actualmente están basados en el uso de técnicas estadísticas, en particular series de tiempo lineales. Las redes neuronales artificiales (RNA) son modelos matemáticos que pretenden emular el funcionamiento del cerebro humano, su aplicación en economía e ingeniería surge a finales de los años ochenta con buenos resultados. Las RNA se presentan como una alternativa para simular el comportamiento de variables financieras que, por lo general, tienden a parecerse a un paseo aleatorio. En este trabajo se muestran los resultados del entrenamiento de una red neuronal para negociación de la tasa de cambio EUR/USD y las bondades del algoritmo de entrenamiento chemotaxis, que permite entrenar redes que maximicen una función objetivo que relacione aciertos en la predicción con las ganancias de un trader., A mathematical tool or model for predicting how an economic variable like the exchange rate (relative price between two currencies) will respond is a very important need for investors and policy-makers. Most current techniques are based on statistics, particularly linear time series theory. Artificial neural networks (ANNs) are mathematical models which try to emulate biological neural networks’ parallelism and nonlinearity; these models have been successfully applied in Economics and Engineering since the 1980s. ANNs appear to be an alternative for modelling the behaviour of financial variables which resemble (as first approximation) a random walk. This paper reports the results of using ANNs for Euro/USD exchange rate trading and the usefulness of the algorithm for chemotaxis leading to training networks thereby maximising an objective function re predicting a trader’s profits. JEL: F310, C450.

Tipo de documento:Artículo - Article
Información adicional:Los autores o titulares del derecho de autor de cada artículo confieren a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características: 1.    Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la revista Ingeniería e Investigación, la Universidad Nacional de Colombia y ante terceros. 2.    La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la revista Ingeniería e Investigación en el Sistema Open Journal Systems y en la página principal de la revista (www.revistaingenieria.unal.edu.co), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación. 3.    Los autores autorizan a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la revista Ingeniería e Investigación para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión. 4.    Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.
Palabras clave:artificial neural network, chemotaxis, FOREX, trading strategy, chemotaxis, estrategias de negociación, Forex, redes neuronales artificiales, redes multicapa, JEL: F310, C450
Unidad administrativa:Revistas electrónicas UN > Ingeniería e Investigación
Código ID:18910
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :25 Junio 2014 20:41
Ultima modificación:19 Agosto 2014 04:04
Ultima modificación:19 Agosto 2014 04:04
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox