Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Diagnóstico de fallas con redes neuronales. parte ii: reconocimiento de flujos

Tarifa, Enrique Eduardo and Martínez, Sergio Luis (2010) Diagnóstico de fallas con redes neuronales. parte ii: reconocimiento de flujos. Ingeniería e Investigación; Vol. 27, núm. 2 (2007); 65-71 Ingeniería e Investigación; Vol. 27, núm. 2 (2007); 65-71 2248-8723 0120-5609 .

Texto completo

[img]
Vista previa
PDF
484kB

URL oficial: http://revistas.unal.edu.co/index.php/ingeinv/arti...

Resumen

En el presente trabajo el sistema de diagnóstico presentado en la parte I es modificado para supervisar procesos que evolucionan en forma compleja ante la presencia de fallas. Al igual que en la Parte I, se considera que cuando una falla afecta a un proceso, cada variable evoluciona siguiendo una trayectoria. Sin embargo, esta vez dicha trayectoria no es única, sino que pertenece a un conjunto de infinitas trayectorias posibles denominado flujo. Cada falla tiene asociado un flujo particular para cada variable. Entonces, en un proceso afectado por una falla, el problema del diagnóstico de fallas se traduce a reconocer, para todas las variables, a cuál flujo pertenece la trayectoria que está siendo observada. Al identificar los flujos se habrá identificado la falla que los provoca. Modelado el diagnóstico de fallas como un problema de reconocimiento de flujos, se realizó un desarrollo teórico que culminó con la definición tanto de la estructura como del método de entrenamiento de las redes neuronales empleadas por el nuevo sistema de diagnóstico. En las pruebas hechas, el nuevo sistema de diagnóstico presentó muy buen comportamiento, siendo el diagnóstico exacto, de alta resolución y estable frente al ruido. Finalmente, la teoría desarrollada también indica cómo deben ser escaladas las redes para supervisar procesos de mayor complejidad., The diagnostic system introduced in Part I is modified in this work for supervising complex processes when faults present themselves. As in Part I, it is supposed that when a fault affects a process, then each variable evolves fo-llowing a trajectory. However, this time the aforementioned trajectory is not unique but belongs to a set of infinite possible trajectories named flow. Each fault in a particular flow is associated with each variable. Faults affecting a process can then be diagnosed by recognising which flow the trajectory being observed belongs to for every variable in turn. Once flows have been identified, then the fault causing them is also identified. Theory was de-veloped after modelling fault diagnosis as being a flow recognition problem, definitions being yielded for both structure and training method for the artificial neural networks used by the new diagnostic system. The diagnostic system performed well in tests, diagnosis being exact, having high, stable resolution in the presence of noise. The theory so developed recommends networks being scaled-up for supervising more complex processes.

Tipo de documento:Artículo - Article
Información adicional:Los autores o titulares del derecho de autor de cada artículo confieren a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características: 1.    Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la revista Ingeniería e Investigación, la Universidad Nacional de Colombia y ante terceros. 2.    La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la revista Ingeniería e Investigación en el Sistema Open Journal Systems y en la página principal de la revista (www.revistaingenieria.unal.edu.co), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación. 3.    Los autores autorizan a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la revista Ingeniería e Investigación para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión. 4.    Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.
Palabras clave:fault diagnosis, artificial neural network, flow recognition, optimisation, noise tolerance, diagnóstico de fallas, redes neuronales, reconocimiento de flujos, optimización, tolerancia al ruido
Unidad administrativa:Revistas electrónicas UN > Ingeniería e Investigación
Código ID:18891
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :25 Junio 2014 20:34
Ultima modificación:19 Agosto 2014 04:04
Ultima modificación:19 Agosto 2014 04:04
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox